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Machine Learning in Materials Science
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The Forward Path: Surrogate ML Models
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The Inverse Path
The inverse problem is challenging!
We might first want to better understand the structure of the
chemical space.
Different views highlighting the structure conditioned on desired
properties.
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Conditional Structure of Chemical Space
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General Encoding-Decoding Scheme
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Linear Latent Variable Models
I Factor Analysis (with PCA and CCA as special cases).
I The Information Bottleneck as a general latent variable model.

Nonlinear Latent Variable Models
I Nonlinearity through deep neural nets: Deep IB.

Structuring the Chemical Space
I Structuring the latent space.
I Archetype analysis  Deep Chemical Archetypes.
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Latent Variable Models: Mixture Densities
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Any data point x could have been generated in two ways; the
component responsible for generating x needs to be inferred.
We say, the class indicator variable z is latent.
This is an example of a huge class of latent variable models (LVM)
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Factor analysis

One problem with mixture models: only a
single latent variable. Each observation can
only come from one of K prototypes.
Alternative: zi ∈ RL. Gaussian prior:

p(zi ) = N (zi |µ0,Σ0)
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Figure 12.1 in K. Murphy

We take an isotropic Gaussian “spray can” and slide it along the 1d line
defined by wzi + µ. This induces a correlated Gaussian in 2d.
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Special Cases: PCA and CCA

Factor loading matrix W = σ2I  (probabilistic) PCA.
Multi-view version involving x and y  CCA.

xi yi

zs
izx

i zy
i

Bx By

W x W y

N

From figure 12.19 in K. Murphy
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The Information Bottleneck (Tishby et al., 1999)
FA is powerful, but still limited (Gaussian assumptions etc.). Alternatives?
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Mutual Information

A measure of mutual dependence between two random variables:
reduction of uncertainty by knowing one variable.
For continuous RVs:

I(x; y) =
∫ ∫

p(x , y) log
( p(x , y)

p(x) p(y)

)
dx dy

= DKL(p(x , y)‖p(x) p(y))

x and y independent  knowing x does not give any information
about y  I(x; y) = 0.
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Information Bottleneck

The IB principle: compress x into z , keep information about y .
Assume y and z are conditionally independent given x an solve:

minp(z|x)I(x ; z)− λI(z ; y).

The original IB formulation is not a generative model:x , y are only
used for estimating p(x , y).
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IB as a latent variable model
Assume z = f (x) + ξ captures all relevant information about y .
Then p(x, y |z) = p(x|z)p(y |x, z) = p(x|z)p(y |z) ⇒ x ⊥⊥ y |z
 latent version IB (lat) , basically an asymmetric CCA model.

CCA: p(x|z)p(y |z)p(z)
x ⊥⊥ y | z
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Gaussian IB (Chechnik et al. 2003))
Assume x and y are jointly Gaussian-distributed.

(x , y) ∼ N
(

0,
(

Σx Σyx
Σxy Σy

))
,

The optimal z is a noisy projection of x:
z = Ax + ξ , ξ ∼ N (0, I) ⇒ z |x ∼ N (Ax , I) , z ∼ N (0,AΣxA>+I).

Analytic form of mutual information:
I(x; z) = 1

2 log |AΣxA> + I|,
I(z; y) = I(x; z)− 1

2 log |AΣx |y A> + I|.
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Gaussian IB as a “universal” latent variable model
general y : rows of A are eigenvectors of Σ−1

x Σx |y  CCA
one-dimensional y :  least squares regression
y is noisy version of x :  PCA

CCA: p(x|z)p(y |z)p(z)
x ⊥⊥ y | z
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IB(lat): p(z|x)p(y |z)p(x)
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Nonlinear Latent Variable Models

Nonlinearity through deep neural nets: Deep IB.
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Expressive power of Neural Nets
Theorem (Kolmogorov 61, Arnold 57,
Lorentz 62): every continuous function on
the hypercube has the form

f (x) =
2d+1∑
j=1

Φ
( d∑

i=1
ψji (xi )

)
,

for properly chosen functions Φ, ψji .
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Universal function approximators can be built from “simple” neurons
using only one hidden layer (Cybenko 89, Hornik 91,Pinkus 99).

Wikipedia
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Why Deep Architectures ?

(Montufar et al, 2014): The complexity of Deep Rectifier Models
grows exponentially in the number of layers L
and only polynomially in the width of the layers m.
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The deep IB
Neural nets are trained “end-to-end” using
stochastic gradient descent.
Consider parametric IB , with conditionals pφ(z |x) and pθ(y |z).
Assumption: complex joint distribution, but simple conditionals.

max
φ,θ
−Iφ(z ; x) + λIφ,θ(z ; y)

Iφ(z ; x) ≈ 1
n
∑

i DKL(pφ(z |xi )‖p(z))︸ ︷︷ ︸
assume analytic form available

Iφ,θ(z ; y) ≈ 1
n
∑

i log pθ(yi |zi )︸ ︷︷ ︸
log likelihood

+ c.

Volker Roth (University of Basel) 6th May 2019 20 / 36



Towards the deep IB: the decoder side

Deep IB: z = f (x) + ξ, ξ ∼ N (0, I),
f (x) implemented by deep neural net.
 add stochastic input ξ ∼ N (0, I).
This is sometimes called the reparameterization trick.
...basically just the law of transformations of random variables.
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Structuring the Chemical Space

A general problem of Deep IBs
 need more structure in the latent space.
Solution: archetype analysis  Deep Chemical Archetypes.
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The Inverse Path
The inverse problem is challenging!
We might first want to better understand the structure of the
chemical space.
Different views highlighting the structure conditioned on desired
properties.
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Conditional Structure of Chemical Space
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One problem with Autoencoders/IBs
Local similarity in the latent space is translated to local similarity in the
output space...but no “global” structure.
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Archetypes

Idea: enforce structure in the latent space. Objects must be convex
mixtures of “extreme” objects  archetypes.

σ
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Archetypes and Evolutionary Trade-offs

In a biological system, a phenotype is defined by a vector of traits
(quantitative measurements)
Space of phenotypes: morphospace
Natural selection: optimize fitness function  point in
morphospace.
But organisms need to perform multiple tasks that all contribute to
their fitness  multi-objective optimization problem.
Pareto front: best trade-offs between different requirements.
Point on Pareto front depends on relative contribution of tasks to
fitness.
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Computational Archetype Selection
Cutler &Breiman, Archetypal Analysis, Technometrics 1994.

n observations {x1, . . . , xn} ∈ Rp, as rows of data matrix X ∈ Rn×p

Aim: find K archetypes ⇒ Z ∈ RK×p; K � n fixed.
Observations are convex mixtures of archetypes:

x i = Z tai + εi , aij ≥ 0 and
∑K

j=1 aij = 1.
Archetypes are convex mixtures of observations:

z i =
n∑

j=1
bijx j , where bij ≥ 0 and

∑n
j=1 bij = 1

Archetypes approximate convex hull
Constrained optimization problem.
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Deep Archetypes (Keller et al. 2018)

Problem: it is difficult to find a representation where convex mixing
works...
Solution: fix the ATs at vertices of a simplex located in the latent space
of an IB and use deep nets to learn such a representation.
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Deep Chemical Archetypes
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Deep Chemical Archetypes

Input x : SMILES strings and 3D
molecule descriptors depending
on atom positions
 conformational information.
Target property: energy difference
between highest occupied molecular
orbital and lowest unoccupied molecular
orbital, HOMO-LUMO gap.
Deep SMILES decoder, producing
syntactically correct SMILES
(O’Boyle & Dalke, 2018).
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Deep Chemical Archetypes: Encoding Invariances
Problem: many molecules have (roughly) the same homo-lumo gap!
 need more latent dimensions to capture structural variations
 “orthogonal” space  sample molecules with a given property!

max MI

max MI

min MI

max MI
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Deep Chemical Archetypes: Results on QM9

13k organic molecules made up of H, C, N, O and F, with up to nine
heavy (non-hydrogen) atoms. Properties calculated by DFT.
Molecules in the vicinity of archetypes:

Some potentially interesting molecules found via sampling the
“orthogonal” space (more on that will appear elsewhere...)
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Summary

Chemical space  challenging ML problems.
Approach: visualize structure conditioned on target properties.
Deep information bottleneck models are powerful tools for this
purpose!
Generative model allows us to sample molecules with desired
properties.
But still many open questions: large parts of the chemical space
seem to be empty, transfer of models not trivial at all.
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Thank you for your attention!
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