
Gaussian Processes for Force Fields
Aldo Glielmo, Claudio Zeni

Physics Department, King’s College London

08 May 2019 – Aalto University (FI)



Part I 

Bayesian inference and Gaussian 
process regression

 2

Aldo Glielmo

Physics Department, King’s College London



The aim of classical potentials

 3

Quantum
Hamiltonian 

Classical Potential
E = E({ri})

Ĥ ∣ ϕ0⟩ = ε0 ∣ ϕ0⟩

References:
- Skinnert et al.  Mod. & Sim. in Materials (1994 )
- Behler, J., & Parrinello, M. PRL (2007)
- Bartók et al. PRL (2010)
- Li, Z., Kermode, J. R., & De Vita, A. PRL (2015)



The aim of classical potentials

 3

Quantum
Hamiltonian 

Classical Potential
E = E({ri})

Ĥ ∣ ϕ0⟩ = ε0 ∣ ϕ0⟩

References:
- Skinnert et al.  Mod. & Sim. in Materials (1994 )
- Behler, J., & Parrinello, M. PRL (2007)
- Bartók et al. PRL (2010)
- Li, Z., Kermode, J. R., & De Vita, A. PRL (2015)

ML Potentials: 
Systematic approaches to implicitly model 
the electronic degrees of freedom
E = E({ri} ∣ ε0)



• Quantum system of N atoms 
at a specific time

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



• Quantum system of N atoms 
at a specific time

Central atom

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Cutoff

• Quantum system of N atoms 
at a specific time

Central atom

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Cutoff

• Quantum system of N atoms 
at a specific time

Central atom

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Cutoff

• Quantum system of N atoms 
at a specific time

Central atom D = {(⇢, f)i, i = 1, . . . , N}

Configuration

Input Space:
• Configuration ρ
• 3xM dimensional
• typically M~ 30-40

M = 2

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Cutoff

D = {(⇢, f)i, i = 1, . . . , N}
Force

Output space:
• Local energy ε of 

central atom
• The force f is 

obtained through 
differentiation

• Quantum system of N atoms 
at a specific time

Central atom D = {(⇢, f)i, i = 1, . . . , N}

Configuration

Input Space:
• Configuration ρ
• 3xM dimensional
• typically M~ 30-40

M = 2

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Cutoff

• The function f to be learned gives the force as a function of the local configuration 
ρ around a central atom

• The existence of such map can be assumed in most physical systems 
• Linear scaling with N is guaranteed by the locality of the representation

D = {(⇢, f)i, i = 1, . . . , N}
Force

Output space:
• Local energy ε of 

central atom
• The force f is 

obtained through 
differentiation

• Quantum system of N atoms 
at a specific time

Central atom D = {(⇢, f)i, i = 1, . . . , N}

Configuration

Input Space:
• Configuration ρ
• 3xM dimensional
• typically M~ 30-40

M = 2

• The computational cost of calculating 
energies and forces scales badly with 
N and also has high prefactors 

Learning force fields: problem setup



Traditional approach

• The traditional way of fitting potential energies 
and forces involves a lengthy trial and error 
procedure of  careful selection of meaningful 
parametric functional forms



Traditional approach

• The traditional way of fitting potential energies 
and forces involves a lengthy trial and error 
procedure of  careful selection of meaningful 
parametric functional forms

A Lennard-Jones parametric potential



Traditional approach

Typical table of parameters of an EAM potential  (from Mishin, Acta Materiali (2004))

• The traditional way of fitting potential energies 
and forces involves a lengthy trial and error 
procedure of  careful selection of meaningful 
parametric functional forms

A Lennard-Jones parametric potential



The “new” data-driven approach

• Very flexible models able to capture much more information from data

2007

2010



The “new” data-driven approach

• Very flexible models able to capture much more information from data

2007

2010

“Our long term goal in applying neural networks is to 
demonstrate that they can be used to interpolate 
complex and expensive ab initio databases that 
describe interactions between atoms.”

1994



Bayesian inference 101
𝒟 Dataset (e.g. configurations and forces from a DFT calculation)



Bayesian inference 101

p( f )

𝒟 Dataset (e.g. configurations and forces from a DFT calculation)

Prior: Our beliefs about the function before we observe any data 

(e.g., a Lennard Jones with Gaussian distributed parameters)



Bayesian inference 101

p( f )

p(𝒟 ∣ f )

𝒟 Dataset (e.g. configurations and forces from a DFT calculation)

Prior: Our beliefs about the function before we observe any data 

(e.g., a Lennard Jones with Gaussian distributed parameters)

Likelihood: The probability to observe the data given a model prediction



Bayesian inference 101

p( f )

p(𝒟 ∣ f )

𝒟 Dataset (e.g. configurations and forces from a DFT calculation)

Prior: Our beliefs about the function before we observe any data 

(e.g., a Lennard Jones with Gaussian distributed parameters)

Posterior: Our beliefs about the function after we have observe any datap( f ∣ 𝒟)

Likelihood: The probability to observe the data given a model prediction



Bayesian inference 101

p( f )

p(𝒟 ∣ f )

𝒟 Dataset (e.g. configurations and forces from a DFT calculation)

Prior: Our beliefs about the function before we observe any data 

(e.g., a Lennard Jones with Gaussian distributed parameters)

Posterior: Our beliefs about the function after we have observe any datap( f ∣ 𝒟)

Likelihood: The probability to observe the data given a model prediction

Prior Posterior

p( f ∣ 𝒟) =
p(𝒟 ∣ f )p( f )

p(𝒟)

[Rasmussen and Williams 2006 ]

Bayes’  Theorem



Probabilistic interpretation of least squares

p(w ∣ 𝒟) ∝
p(𝒟 ∣ w)p(w)

p(𝒟)

Bayes’  Theorem



Probabilistic interpretation of least squares

L(w) = ∑
i

∥fi − fw(ρi)∥2 + α∥w∥2

Regularised squared error loss

p(w ∣ 𝒟) ∝
p(𝒟 ∣ w)p(w)

p(𝒟)

Bayes’  Theorem



Probabilistic interpretation of least squares

L(w) = ∑
i

∥fi − fw(ρi)∥2 + α∥w∥2

p( fi ∣ w) ∝ e−∥fi−fw(ρi)∥2/2σ2
f

p(w) ∝ e−∥w∥2/2σ2
w

Regularised squared error loss

Gaussian prior and Gaussian likelihood

p(w ∣ 𝒟) ∝
p(𝒟 ∣ w)p(w)

p(𝒟)

Bayes’  Theorem



Probabilistic interpretation of least squares

L(w) = ∑
i

∥fi − fw(ρi)∥2 + α∥w∥2

p( fi ∣ w) ∝ e−∥fi−fw(ρi)∥2/2σ2
f

p(w) ∝ e−∥w∥2/2σ2
w

Regularised squared error loss

Gaussian prior and Gaussian likelihood

Minimising a regularised squared loss 

corresponds to maximising a 

posterior distribution!

p(w ∣ 𝒟) ∝
p(𝒟 ∣ w)p(w)

p(𝒟)

Bayes’  Theorem

−ln p(w ∣ 𝒟) ∝ ∑
i

∥fi − fw(ρi)∥2 +
σ2

f

σ2
w

∥w∥2



Prior information
p( f ∣ 𝒟) ∝ p(𝒟 ∣ f )p( f )

[Rasmussen and Williams 2006 ]

PriorPosterior

Likelihood
D = {(⇢, f)i, i = 1, . . . , N}

1
D = {(⇢, f)i, i = 1, . . . , N}

2
𝒟 = , , …



Prior information
p( f ∣ 𝒟) ∝ p(𝒟 ∣ f )p( f )

[Rasmussen and Williams 2006 ]

PriorPosterior

Traditional approaches:
• High prior information (parametric 

functional forms)
• Hence: 

limited in their accuracy if prior is 
wrong
simple to interpret

very fast

tend to be more transferable

New ML approaches:
• Low prior information (Neural 

Networks, non parametric regression)
• Hence: 

very flexible (potentially very 
accurate)

difficult to interpret 
relatively slow
transferability can be problematic

Likelihood
D = {(⇢, f)i, i = 1, . . . , N}

1
D = {(⇢, f)i, i = 1, . . . , N}

2
𝒟 = , , …

For robustness, for interpretability, and since we will never have infinite data:
We need a way to select the appropriate model complexity



Gaussian process prior
A Gaussian process can be used as prior distribution

p( f(ρ)) = 𝒢𝒫(0,k(x, x′�))

0.8 1.0 1.2 1.4 1.6 1.8

Distance (Å)

�2

�1

0

1

2

E
ne

rg
y

(e
V
)

mean
realisations



Gaussian process prior
A Gaussian process can be used as prior distribution

p( f(ρ)) = 𝒢𝒫(0,k(x, x′�))

Predictions

p( f(x) ∣ 𝒟) = 𝒢𝒫( ̂f(x), ̂k(x, x′�))

Using a Gaussian likelihood,
the posterior Gaussian process can be found analytically

̂f(x) =
N

∑
i=1

k(x, xi)αi

̂σ2(x) = ̂k(x, x) Predicted variance (measure of uncertainty)

0.8 1.0 1.2 1.4 1.6 1.8

Distance (Å)

�2

�1

0

1

2

E
ne

rg
y

(e
V
)

mean
realisations

0.8 1.0 1.2 1.4 1.6 1.8

Distance (Å)

�2

�1

0

1

2

E
ne

rg
y

(e
V
)

mean
realisations



Gaussian process prior
A Gaussian process can be used as prior distribution

• Very flexible regression model (provably equivalent to a NN with a single, infinite hidden 
layer)

• Principled uncertainty predictions (crucial for transferability and validation)

• Prior knowledge can be included into the kernel function

p( f(ρ)) = 𝒢𝒫(0,k(x, x′�))

Predictions

p( f(x) ∣ 𝒟) = 𝒢𝒫( ̂f(x), ̂k(x, x′�))

Using a Gaussian likelihood,
the posterior Gaussian process can be found analytically

̂f(x) =
N

∑
i=1

k(x, xi)αi

̂σ2(x) = ̂k(x, x) Predicted variance (measure of uncertainty)

0.8 1.0 1.2 1.4 1.6 1.8

Distance (Å)

�2

�1

0

1

2

E
ne

rg
y

(e
V
)

mean
realisations

0.8 1.0 1.2 1.4 1.6 1.8

Distance (Å)

�2

�1

0

1

2

E
ne

rg
y

(e
V
)

mean
realisations



GP visualisation

Squared exponential kernel with length scale 

Dr. Ádám Fekete 
King’s College London

Gaussian likelihood with “noise”  parameter 

k(x, x) = e−(x−x′�)2/2ℓ2

Animation by

p( fi ∣ f(xi)) ∝ e−( fi−f(xi))2/2σ2
n

ℓ

σ2
n

https://mybinder.org/v2/gh/fekad/gp-
visualisation.git/master?filepath=gp-
visualisation.ipynb

https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb


GP visualisation

Squared exponential kernel with length scale 

Dr. Ádám Fekete 
King’s College London

Gaussian likelihood with “noise”  parameter 

k(x, x) = e−(x−x′�)2/2ℓ2

Animation by

p( fi ∣ f(xi)) ∝ e−( fi−f(xi))2/2σ2
n

ℓ

σ2
n

https://mybinder.org/v2/gh/fekad/gp-
visualisation.git/master?filepath=gp-
visualisation.ipynb

Posterior Gaussian process ?

https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb


GP learning: design of kernel function

p(ε(ρ)) = 𝒢𝒫(0,k(ρ, ρ′�))

• A Gaussian Process regression assumes a normal distribution for p(ε(ρ)), a GP

• Kernels should respects all the symmetries of the force and possess a controllable 
degree of prior information



GP learning: design of kernel function

p(ε(ρ)) = 𝒢𝒫(0,k(ρ, ρ′�))

• A Gaussian Process regression assumes a normal distribution for p(ε(ρ)), a GP

• Kernels should respects all the symmetries of the force and possess a controllable 
degree of prior information

Interaction Order

ρ ρ’

Triplets
of ρ’

Triplets
of ρ

Triplets
of ρ

Triplets
of ρ’

Quintuplets
of ρ

Quintuplets
of ρ’

ρ ρ’

Triplets
of ρ

Triplets
of ρ’

ρ ρ’

ρ ρ’

Atoms
of ρ’

Atoms
of ρ

Atoms
of ρ

Atoms
of ρ’

Three body kernel Five body kernel

N
on

 u
ni

qu
e

U
ni

qu
e

ρ ρ’

Triplets
of ρ’

Triplets
of ρ

Triplets
of ρ

Triplets
of ρ’

Quintuplets
of ρ

Quintuplets
of ρ’

ρ ρ’

Triplets
of ρ

Triplets
of ρ’

ρ ρ’

ρ ρ’

Atoms
of ρ’

Atoms
of ρ

Atoms
of ρ

Atoms
of ρ’

Three body kernel Five body kernel

N
on

 u
ni

qu
e

U
ni

qu
e

• Interaction order can also be encoded 
into the kernel, controlling the degree of 
complexity

∂nkn(ρ, ρ′�)
∂r1⋯∂rn

= 0

3- and 5-body interactions

Symmetries

• Symmetry properties should be encoded 
into the kernel function

2
1

1
2

𝒫ρ

ℛρ

1
2

ρ k(𝒫ρ, 𝒫′�ρ′�) = k(ρ, ρ′�)

k(ℛρ, ℛ′�ρ′�) = k(ρ, ρ′�)

Permutation invariance

Rotation invariance



Part II 

Choice of kernel function and 
computational speedups

 13

Claudio Zeni

Physics Department, King’s College London



GP learning: design of kernel function

p(ε(ρ)) = 𝒢𝒫(0,k(ρ, ρ′�))

• A Gaussian Process regression assumes a normal distribution for p(ε(ρ)), a GP

• Kernels should respects all the symmetries of the force and possess a controllable 
degree of prior information

Interaction Order

ρ ρ’

Triplets
of ρ’

Triplets
of ρ

Triplets
of ρ

Triplets
of ρ’

Quintuplets
of ρ

Quintuplets
of ρ’

ρ ρ’

Triplets
of ρ

Triplets
of ρ’

ρ ρ’

ρ ρ’

Atoms
of ρ’

Atoms
of ρ

Atoms
of ρ

Atoms
of ρ’

Three body kernel Five body kernel

N
on

 u
ni

qu
e

U
ni

qu
e

ρ ρ’

Triplets
of ρ’

Triplets
of ρ

Triplets
of ρ

Triplets
of ρ’

Quintuplets
of ρ

Quintuplets
of ρ’

ρ ρ’

Triplets
of ρ

Triplets
of ρ’

ρ ρ’

ρ ρ’

Atoms
of ρ’

Atoms
of ρ

Atoms
of ρ

Atoms
of ρ’

Three body kernel Five body kernel

N
on

 u
ni

qu
e

U
ni

qu
e

• Interaction order can also be encoded 
into the kernel, controlling the degree of 
complexity

∂nkn(ρ, ρ′�)
∂r1⋯∂rn

= 0

3- and 5-body interactions

Symmetries

• Symmetry properties should be encoded 
into the kernel function

2
1

1
2

𝒫ρ

ℛρ

1
2

ρ k(𝒫ρ, 𝒫′�ρ′�) = k(ρ, ρ′�)

k(ℛρ, ℛ′�ρ′�) = k(ρ, ρ′�)

Permutation invariance

Rotation invariance



Building n-body kernels
1

2



Building n-body kernels

𝑘2(𝜌, 𝜌′�) = ∫ 𝑑𝐫𝜌(𝐫)𝜌′�(𝐫)

• Permutation invariant representation of a local environment

1 2𝜌(𝐫, {𝐫𝑖}) =
𝑀

∑
𝑖=1

𝒩(𝐫𝑖, 𝜎2)

• Dot product induces a 2-body kernel

1
2

2

1

1
2



Building n-body kernels

𝑘2(𝜌, 𝜌′�) = ∫ 𝑑𝐫𝜌(𝐫)𝜌′�(𝐫)

• Permutation invariant representation of a local environment

1 2𝜌(𝐫, {𝐫𝑖}) =
𝑀

∑
𝑖=1

𝒩(𝐫𝑖, 𝜎2)

• Dot product induces a 2-body kernel

1
2

2

1

1
2

𝑘𝑠
𝑛(𝜌, 𝜌′�) = ∫𝑂(3)

𝑑ℛ𝑘𝑛(𝜌, ℛ𝜌′�) ∫ 𝑘𝑛( )

• Haar integration imposes rotational symmetry



Building n-body kernels

𝑘2(𝜌, 𝜌′�) = ∫ 𝑑𝐫𝜌(𝐫)𝜌′�(𝐫)

• Permutation invariant representation of a local environment

1 2𝜌(𝐫, {𝐫𝑖}) =
𝑀

∑
𝑖=1

𝒩(𝐫𝑖, 𝜎2)

• Dot product induces a 2-body kernel

1
2

2

1

1
2

𝑘𝑠
𝑛(𝜌, 𝜌′�) = ∫𝑂(3)

𝑑ℛ𝑘𝑛(𝜌, ℛ𝜌′�) ∫ 𝑘𝑛( )

• Haar integration imposes rotational symmetry



SOAP kernel

𝜌(𝐫) =
𝑀

∑  
𝑖=1

𝒩(𝐫𝑖, 𝜎2)𝑓𝑐𝑢𝑡( |𝐫𝑖 | )

• Start by representing the environment of an atom as its neighbour density



SOAP kernel

𝜌(𝐫) =
𝑀

∑  
𝑖=1

𝒩(𝐫𝑖, 𝜎2)𝑓𝑐𝑢𝑡( |𝐫𝑖 | )

• Start by representing the environment of an atom as its neighbour density

• Expand the neighbour density in a basis 
of spherical harmonics and radial functions:

𝜌(𝐫) =
 

∑  
𝑛𝑙𝑚

𝑐𝑖
𝑙𝑚𝑛𝑌𝑙𝑚(𝐫̂)𝑔𝑛(𝑟)



SOAP kernel

𝜌(𝐫) =
𝑀

∑  
𝑖=1

𝒩(𝐫𝑖, 𝜎2)𝑓𝑐𝑢𝑡( |𝐫𝑖 | )

• Start by representing the environment of an atom as its neighbour density

• Expand the neighbour density in a basis 
of spherical harmonics and radial functions:

𝜌(𝐫) =
 

∑  
𝑛𝑙𝑚

𝑐𝑖
𝑙𝑚𝑛𝑌𝑙𝑚(𝐫̂)𝑔𝑛(𝑟)

• Take the power spectrum and normalize it:

~𝑝𝑛𝑛′�𝑙 =
 𝑙

∑  
𝑚=−𝑙

𝑐𝑖∗
𝑛𝑙𝑚𝑐𝑖

𝑛′ �𝑙𝑚 𝐩𝑖 = ~𝐩𝐢 / |~𝐩𝐢 |



SOAP kernel

𝜌(𝐫) =
𝑀

∑  
𝑖=1

𝒩(𝐫𝑖, 𝜎2)𝑓𝑐𝑢𝑡( |𝐫𝑖 | )

• Start by representing the environment of an atom as its neighbour density

• Expand the neighbour density in a basis 
of spherical harmonics and radial functions:

𝜌(𝐫) =
 

∑  
𝑛𝑙𝑚

𝑐𝑖
𝑙𝑚𝑛𝑌𝑙𝑚(𝐫̂)𝑔𝑛(𝑟)

• Take the power spectrum and normalize it:

~𝑝𝑛𝑛′�𝑙 =
 𝑙

∑  
𝑚=−𝑙

𝑐𝑖∗
𝑛𝑙𝑚𝑐𝑖

𝑛′ �𝑙𝑚 𝐩𝑖 = ~𝐩𝐢 / |~𝐩𝐢 |

• The SOAP kernel is the scalar product elevated to an integer power:

𝑘(𝐫𝐢,  𝐫𝐣) = 𝐴2 𝐩𝑖 · 𝐩𝑗 ξ



Machine Learning a General-Purpose Interatomic 
Potential for Silicon
A. P. Bartók, J. Kermode, N. Bernstein, G. Csányi 
(PRX 2018)



𝜌

𝜌′�

𝑟𝑖1 𝑟𝑖2

𝑟𝑖1𝑖2

𝑟𝑗1𝑗2

𝑟𝑗1

𝑟𝑗2

Explicit n-body kernels

• Simple low-n kernels can be easily 
constructed directly on invariant degrees 
of freedom

• Very intuitive and computationally 
efficient!

101 102 103

Number of training configurations, N

0.09

0.10

0.11

0.12

0.13

M
A
E

on
fo

rc
e,

(e
V

/Å
)

ks
2

ks
2, Haar

ks
3

ks
3, Haar



Choosing the interaction order: heuristics

AG, C. Zeni, A. De Vita, 
Efficient non-parametric n-body force fields from machine learning (PRB 2018)

• GP-FFs are always sensibly more accurate on target forces than traditional FFs 

• Learning with a higher order kernel is more accurate but requires more data

• The optimal order depends on the material and it can be chosen as the smallest n 
compatible with target accuracy 

•  Low order models are often optimal

10 20 50 100 200 500 1000

Number of training points, N

0.0

0.1

0.2

0.3

0.4

M
A

E
on

fo
rc

e
(e

V
/Å

)

EAM
ks
2

ks
3

kds
MB

10 20 50 100 200 5001000 4000

Number of training points, N

0.0

0.5

1.0

1.5

2.0

M
A

E
on

fo
rc

e
(e

V
/Å

) ks
2

ks
3

kds
MB

Crystalline Nickel: learning curves Amorphous Silicon: learning curves



Choosing the interaction order: marginal lik.

ln𝑝(𝜺 ∣ 𝝆, ℳ𝑛) ∝ −
1
2

𝜺T𝐊−1
𝑛 𝜺 −

1
2

ln |𝐊𝑛 |
Marginal likelihood

Fit Complexity

• The optimal interaction order can also 
be selected as the one achieving the 
maximal marginal likelihood

2-body 3-body 5-body

Kernel order

�40

�30

�20

�10

0

S
ca

le
d

lo
g

m
ar

g.
lik

.

bulk, N = 50
bulk, N = 200
cluster, N = 50
cluster, N = 200

AG, C. Zeni, A. Fekete, A. De Vita, 
Bayesian construction of n-body force fields via Gaussian process regression 

Nickel systems: marginal likelihood



Speeding up low order models
• n-body kernels predictions can be decomposed in n-body contributions 

• Hence one can tabulate the GP over the degrees of freedom of n particles (e.g. 
distances and angles) obtaining a very fast non-parametric n-body force field

• This mapped force field (MFF) is identical to the original one but substantially faster

Speedup: Prediction time of GP potential 
and remapped potential vs N (number of 
training points)

103 104 105 106

Number of grid points, Ng

0.0

0.2

0.4

0.6

0.8

M
A
E

on
G
P

fo
rc

e
(e

V
/Å

)

Fit (3.8N�0.76
g )

Data

0 100 200 300 400 500

Number of training points, N

0

100

200

300

400

P
re

di
ct

io
n

ti
m

e
(s

) GP
MFF
/ N
const.

Mapping: Convergence of the MFF to the 
GP force field as a function of the number 
of grid points

C. Zeni, K. Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita, 
Building machine learning force fields for nanoclusters (JCP 2018)



Examples of MFFs
Copper: Learnt 2-body MFF

2.0 2.5 3.0 3.5 4.0 4.5

Distance (Å)

�0.25

0.00

0.25

2-body

80 100 120 140

Angle (deg)

0.0

0.2
3-body, r1 = r2 = 2.4E

n
er

gy
(e

V
)

• Non-parametric force fields are always more accurate than parametric 
counterparts

• A confidence level can also be predicted, this can help to avoid extrapolation

a-Si: Learnt 3-body MFF



Automatic force field construction
1. Obtain an initial database for your system

2. Choose the order of the interaction needed 
(2-body, 3-body, …)

3. Train a Gaussian Process regression with an 
n-body kernel

4. Tabulate and save the learned potential onto 
the effective degrees of freedom q

5. Interpolate the tabulated points to yield the 
n-body potential energy 

6. Predict the energy of a new configuration 
with the learned n-body as a classical 
potential 



Automatic force field construction
1. Obtain an initial database for your system

2. Choose the order of the interaction needed 
(2-body, 3-body, …)

3. Train a Gaussian Process regression with an 
n-body kernel

4. Tabulate and save the learned potential onto 
the effective degrees of freedom q

5. Interpolate the tabulated points to yield the 
n-body potential energy 

6. Predict the energy of a new configuration 
with the learned n-body as a classical 
potential 

In the MFF package

https://github.com/kcl-tscm/mff/
blob/master/tutorials/

Tutorial_nanoparticles.ipynb



Automatic force field construction
1. Obtain an initial database for your system

2. Choose the order of the interaction needed 
(2-body, 3-body, …)

3. Train a Gaussian Process regression with an 
n-body kernel

4. Tabulate and save the learned potential onto 
the effective degrees of freedom q

5. Interpolate the tabulated points to yield the 
n-body potential energy 

6. Predict the energy of a new configuration 
with the learned n-body as a classical 
potential 

(7. If the GP uncertainty is too large, run an 
additional quantum calculation)

In the MFF package

https://github.com/kcl-tscm/mff/
blob/master/tutorials/

Tutorial_nanoparticles.ipynb



• GP was trained on a set of Ni 19 
nanoparticles.

• 3-body MFF containing information of 
1000 configurations.

• Melting of Ni19 was observed, the 
presence of a slush state confirmed.

• 61 million MD steps were simulated in 
4 days on a 24 cores.

• With DFT it would have taken 2000 
years: 106 speed factor.

Nanocluster MD

C. Zeni, K. Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita, 
Building machine learning force fields for nanoclusters (JCP 2018)



• GP was trained on a set of Ni 19 
nanoparticles.

• 3-body MFF containing information of 
1000 configurations.

• Melting of Ni19 was observed, the 
presence of a slush state confirmed.

• 61 million MD steps were simulated in 
4 days on a 24 cores.

• With DFT it would have taken 2000 
years: 106 speed factor.

Nanocluster MD

C. Zeni, K. Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita, 
Building machine learning force fields for nanoclusters (JCP 2018)



Conclusions
• For robustness and interpretability, we need to be able to 

control the complexity of learning algorithms

• A way to do so is to include all physical symmetries and 
appropriately restrict the modelled interaction order

• This can be done within GP regression by using fully 
symmetric n-body kernels

• Low order models are often found to be sufficiently 
accurate and should hence be selected for their better 
extrapolation properties

• Furthermore their predict ions can be mapped onto 
explicit bases, giving rise to fast and accurate MFFs: non-
parametric force fields

𝑘𝑠
𝑛(𝜌, 𝜌′�) = ∫𝑂(3)

𝑑ℛ𝑘𝑛(𝜌, ℛ𝜌′�)

ln𝑝(𝜺 ∣ 𝝆, ℳ𝑛)

0 100 200 300 400 500

Number of training points, N

0

100

200

300

400

P
re

di
ct

io
n

ti
m

e
(s

) GP
MFF
/ N
const.



Prof. Alessandro De Vita 
King’s College London, 

University of Trieste

Dr. Kevin Rossi 
EPFL

People we need to thank

Dr. Ádám Fekete 
King’s College London



Questions?


