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* Quantum system of N atoms
at a specific time

Central atom
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energies and forces scales badly with
N and also has high prefactors
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_earning force fields: problem setup

* Quantum system of N atoms

at a specific time M =2
* Configuration p Configuration
* 3xM dimensional
Cutoff * typically M~ 30-40
Central atom
* Local energy € of fJ
central atom
* The computational cost of calculating * The force fis Force
energies and forces scales badly with obtained through
N and also has high prefactors differentiation
* The function f to be learned gives the as a function of the

p around a central atom
* The existence of such map can be assumed in most physical systems

. with N is guaranteed by the locality of the representation



Traditional approach

* The traditional way of fitting potential energies
and forces involves a lengthy
procedure of  careful selection of meaningful



Traditional approach

A Lennard-Jones parametric potential

* The traditional way of fitting potential energies
and forces involves a lengthy
procedure of  careful selection of meaningful

llllll




Traditional approach

* The traditional way of fitting potential energies
and forces involves a lengthy trial and error

procedure of
parametric functional forms

careful selection of meaningful

A Lennard-Jones parametric potential

— —6l
‘ o
I min l
Table 1 r (A)
Optimized values of fitting parameters of the EAM potentials for Ni, Al and NizAl
Al Ni Niz;Al
Parameter Value Parameter Value Parameter Value
r. (nm) 0.6725 r. (nm) 0.5168 r. (nm) 0.6500
h. (nm) 0.3294 h. (nm) 0.3323 h. (nm) 0.2658
Vo (eV) —3.5032 x 10° Vo (eV) —3.5126 x 10° Vo (eV) 0.6068
r1 (nm) 0.2858 1 (nm) 3.8673 x 107° r1 (nm) 0.4834
b, 8.5951 x 1072 b, 4.7067 x 1073 b, 2.9013
by 5.0124 x 1072 b, 0.15106 b, 1.0001
0 (eV) 3.7503 x 10° 0 (eV) 3.6046 x 10° 0 (eV) —3.4108
¥ 2.0080 x 10! ¥ 1.9251 x 10! SAl 0.9549
v (I/nm) 4.2799 x 10! y (I/nm) 1.6802 x 10° ani (eV) 5.8549 x 10!
By (nm) 1.1927 x 10* B, (nm) 1.1914 x 10* ga (eV) —1.8162 x 10!
Cy (1/nm?) 8.6029 x 10! Co (I/nm?) 2.0329 x 10°
ro (nm) 5.2755 x 1072 ro (nm) —0.3138
p 0.4890 x 1072 p 0.4890 x 1072

Iypical table of parameters of an EAM potential (from Mishin, Acta Materiali (2004))



The "new” data-driven approach
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Highlights Recent Accepted Collections Authors REEEES Search Press About

Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces

Jorg Behler and Michele Parrinello
Phys. Rev. Lett. 98, 146401 — Published 2 April 2007
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Highlights Recent Accepted Collections Authors EIEIEES] Search Press About

Gaussian Approximation Potentials: The Accuracy of Quantum
Mechanics, without the Electrons

Albert P. Bartok, Mike C. Payne, Risi Kondor, and Gabor Csanyi
Phys. Rev. Lett. 104, 136403 — Published 1 April 2010

* Very flexible models able to capture much more information from data
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The "new” data-driven approach

Hidden
PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About

Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces

Jorg Behler and Michele Parrinello
Phys. Rev. Lett. 98, 146401 — Published 2 April 2007

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors EIEIEES] Search Press About

Featured in Physics

Gaussian Approximation Potentials: The Accuracy of Quantum
Mechanics, without the Electrons

Albert P. Bartok, Mike C. Payne, Risi Kondor, and Gabor Csanyi
Phys. Rev. Lett. 104, 136403 — Published 1 April 2010

|0PSC|enCG Journals ~ Books Publishing Support Login v Search IOPscience

Modelling and Simulation in Materials Science and Engineering
“Our long term goal in applying neural networks is to

Neural ks i onal als SCi _ demonstrate that they can be used to interpolate
eural networks In computational materials science: complex and expensive ab initio databases that

training algorithms describe interactions between atoms.”

A J Skinner and J Q Broughton

* Very flexible models able to capture much more information from data
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Dataset (e.g. configurations and forces from a DFT calculation)
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Bayesian inference 101

&) Dataset (e.g. configurations and forces from a DFT calculation)

p(f) Prior: Our beliefs about the function before we observe any data

(e.g, a Lennard Jones with Gaussian distributed parameters)

p(@ ‘ f) Likelihood: The probability to observe the data given a model prediction

p(f ‘ 9) Posterior: Our beliefs about the function after we have observe any data

Prior /_\ Posterior

Bayes’ Theorem e o L0

—

£ P21 | F R
p(2)

0 05

input, x input, x

[Rasmussen and Williams 2006 ]
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Probabilistic interpretation of least squares

Bayes' Theorem
p(2 | w)p(w)
p(W | D) D)

Regularised squared error loss

Lw) = ) Ilfi = fulpdlI* + allwl)?

Gaussian prior and Gaussian likelihood

p(f, | W) o e WihpIP12e7 w

0 Minimising a
0, % 2
—Inp(w | Y) « E If; = fw(PD |~ + —2||W|| corresponds to maximising a
. 3
l

distribution!



Prior information Prior

Posterior
J 2
pf|D)xp@|Hip(f)
S = 0
1
| .~ | Likelihood - |
o o "D = (p,1) (p.f) ’ o |
1) 2y " [Rasmussen and Williams 2006 ]



Posterior

A v INS
FoS e W 5 Soo’ .
AR
\
\\ < 7 ,’
S_v \ ’
¥ ’
L A ’
-2 . Likelihood
A ’

Traditional approaches:

* High prior information (parametric
functional forms)

* Hence:
¥ limited in their accuracy if prior is
Wrong
v simple to interpret

v very fast

v tend to be more transferable

Prior information Prior
pf1 D)« p(@ | /ip(f)

: & 9= (0.£) (. 1),

0 05 1

Input, X
& [Rasmussen and Williams 2006 ]
New ML approaches:

* Low prior information (Neural
Networks, non parametric regression)

* Hence:

v very flexible (potentially very
accurate)

¥ difficut to interpret
¥ relatively slow
%transferability can be problematic

For robustness, for interpretability, and since we will never have infinite data:

We need a way to select the appropriate model complexity



(Gaussian pProcess prior

. . . . . 2
A Gaussian process can be used as prior distribution — mean

p(f(p)) = EFP(0,k(x, x))
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(Gaussian pProcess prior

A Gaussian process can be used as prior distribution

p(f(p)) = EFP(0,k(x, x))

Using a Gaussian likelihood,
the can be found analytically

p(fx) | D) = CP(f(x), k(x, x)))
N

f(X) — Z k(x, xi)ai Predictions
i=1

62()5) = lg(x’ X) Predicted variance (measure of uncertainty)

Energy (eV)

Energy (eV)

—— mean
realisations

T T T T
1.0 12 14 16
Distance (A)

1.8

—— mean
realisations

T T T T
1.0 12 14 16
Distance (A)

1.8



(Gaussian pProcess prior

A Gaussian process can be used as prior distribution — mean

p(f(p)) = EFP(0,k(x, x))

Energy (eV)

Using a Gaussian likelihood,

the can be found analytically 08 10 12 14 16

1.8

Distance (A)
p(f(x) | D) = LP(f(x), k(x, x")) 2

—— mean
realisations

N
f(x) — Z k(x, xi)ai Predictions
i=1

Energy (eV)

52()6) — lAc(x, x) Predicted variance (measure of uncertainty)
_20.8 1j0 1j2 1i4 1j6
Distance (A)
. regression model (provably equivalent to a NN with a single, infinite hidden
layer)
. (crucial for transferability and validation)

* Prior knowledge can be included into the

1.8



GP visualisation

Animation by

Squared exponential kernel with length scale ¢

k(x, X) — e—(x—x’)z/Zf 2

Gaussian likelihood with “noise” parameter 62 ) |
n Dr. Adam Fekete

p(fz | f(xl)) X 6_(fi_f(xi))2/253 King's College London

https://mybinder.org/v2/gh/fekad/gp-

visualisation.git/master?!filepath=gp-
visualisation.ipynb
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https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
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GP visualisation

Animation by

Squared exponential kernel with length scale ¢

k(x, X) — e—(x—x’)z/Zf 2

ONFA. ]
| kil
Dr. Adam Fekete

—(f—Ff(x)*/262 King’s College London
p(f | f(x) x e (fi=f(x)) 20,

Gaussian likelihood with “noise” parameter 67%

https://mybinder.org/v2/gh/fekad/gp-

visualisation.git/master?filepath=gp-
visualisation.ipynb

Posterior Gaussian process ,
u
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https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
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GP learning: design of kernel function

* A assumes a for p(e(p)), a GP

pe(p)) = EP00,k(p,p))

* Kernels should respects all the of the force and possess a
degree of information
Symmetries Interaction Order
should be encoded . can also be encoded
into the kernel function into the kernel, controlling the degree of
complexity

z@p 2 0"k /

(’ ¥\ Permutation invariance AP P) -0

. //// O\ //// O \\\\
R @® . Rotation invariance Lo O T

k(Rp, R'p") = k(p,p’)

3- andﬁ 5-body Interactions
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GP learning: design of kernel function

* A assumes a for p(e(p)), a GP

pe(p)) = EP00,k(p,p))

* Kernels should respects all the of the force and possess a
degree of information
Symmetries Interaction Order
should be encoded . can also be encoded
into the kernel function into the kernel, controlling the degree of
complexity

z@p 2 0"k /

(’ ¥\ Permutation invariance AP P) -0

. //// O\ //// O \\\\
R @® . Rotation invariance Lo O T

k(Rp, R'p") = k(p,p’)

3- andﬁ 5-body Interactions



Building n-boady kernels

/

Pe g4 P
’ o O
O



Building n-boady kernels

* Permutation invariant representation of a local environment

; p p
p(r, {1;}) = i:Zl/V(l'ia o) - /.\ T /.\

* Dot product induces a 2-body kernel

ky(p, p') = Jdl‘p(r)p’(r)
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SOAP kernel

o Start by representing the environment of an atom as its

M
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SOAP kernel

o Start by representing the environment of an atom as its neighbour density
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o Start by representing the environment of an atom as its neighbour density

p(r) = Z N (1262) fou 1)

« Expand the neighbour density In a basis
of spherical harmonics and radial functions:
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SOAP kernel

Start by representing the environment of an atom as its neighbour density

p(r) = 2 N (1.6%) a1 1)

Expand the neighbour density In a basis
of spherical harmonics and radial functions;

P = D €l ¥in(F) )

nlm

Oﬂiff

Take the power spectrum and normalize It: o

[

~ E N |
Pup1 = Z CoimCn'Im i ~I /|~
ju— /
~ p'=p/|p|

The SOAP kernel is the scalar product elevated to an integer power:
Y-
(8 =2l
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Thermal expansion

Machine Learning a General-Purpose Interatomic Potential for Silicon

------ DFTB

] i | -
1.0y / -~ GAP —— Expt. Refa] 'l'fl' D,?TB
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Machine Learning a General-Purpose Interatomic
Potential for Silicon

A. P Bartdk, |. Kermode, N. Bernstein, G. Csanyi
(PRX 2018)
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Explicit n-body kernels

k(p,p) = D e () /2,

i€p
jep’

11>12€p PeP
j1>j2€p’

T T2 /op2
kg(pa p,) — E E e_”(ril’r’:?’rilw) _P(Tg'l ,7‘;-2,7';-13-2) I”/2¢ .

k]s\lB(p7

* Simple low-n kernels can be easily
constructed directly on invariant degrees
of freedom

* Very inturtive and computationally
efficient!

o) = e~ (k5 (p:p)+kS (p',p")—2k3(p,p"))/2¢

MAE on force, (eV/A)

p rlllz
riN T
O o
/
P Jui
1
rjz
rjl O
-

I I I
101 102 103
Number of training configurations, N




Choosing the interaction order: heuristics

Crystalline Nickel: learning curves Amorphous Silicon: learning curves
0.4 2.0
- --- EAM —4— k3 =) 4 k3
~— + ks ds ~ ]CS
% 0.3 - 2 _+_ kMB % 1.5 —+— Z;S
(I) 0
S 02- S 1.0-
qg o | e mmm Ry EEE O S SN N D NN B NS EEE BN SN EEE BN NN EEE D SN EEE EE ng .
c c
O O
bl 0.1 l 0.5 -
< < —0—0— O—O—0
= =4 =
OO I I I I I I I OO I I I I I I I I I
10 20 50 100 200 500 1000 10 20 50 100 200 5001000 4000
Number of training points, IV Number of training points, N

* GP-FFs are always sensibly more accurate on target forces than traditional FFs

* Learning with a kernel Is but requires

* The optimal order depends on the material and it can be chosen as the smallest n
compatible with target accuracy

* Low order models are often optimal

AG, C. Zeni, A. De Vita,
Efficient non-parametric n-body force fields from machine learning (PRB 20186)



Choosing the interaction order: marginal lik.

* The optimal interaction order can also Marginal likelihood |
be selected as the one achieving the Inp(e | p, M,) x — EeTKn‘le — Eln | K, |

maximal marginal likelihood - Complexity

Nickel systems: marginal likelihood

<

o

(@)

&

LbDD bulk, N = 50

3 —— bulk, N = 200

TS 30 4 —-o- cluster, N = 50

¥p) —¥— cluster, N = 200
—40 | |

2-body 3-body 5-body

Kernel order

AG, C. Zeni, A Fekete, A. De Vita,
Bayesian construction of n-body force fields via Gaussian process regression



Speeding up low order models

* n-body kernels predictions can be decomposed In

* Hence one can tabulate the GP over the degrees of freedom of n particles (e.g.

distances and angles) obtaining a very fast n-body force field
* This mapped force field (MFF) Is to the original one but substantially
Mapping: Convergence of the MFF to the Speedup: Prediction time of GP potential
GP force field as a function of the number and remapped potential vs N (number of
of grid points training points)
<l . _
S 08- —— Fit (3.8N,7079) a0l eGP
L ¢ Data N * MFF
3 c 3004 —— XN
S = --- const.
= c
o S 200 -
O G
S D 100 A
L o
S R B
103 104 105 106 0 100 200 300 400 500
Number of grid points, IV, Number of training points, NV

C. Zeni, K Rossl, AG, A. Fekete, N Gaston, F Baletto, A. De Vita,
Building machine learning force fields for nanoclusters (JCP 2018)



Potential (eV)

Examples of MFFs

Copper: Learnt 2-body MFF
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a-Si: Learnt 3-body MFF

0.25 -
0.00 1 =N===m—meme e e ===

—— 2-body

—0.25 -
I T T T I I

2.0 2.5 3.0 3.5 4.0 4.5
Distance (A)
0.2 -

—— 3-body, 1 =1ro = 2.4

80 100 120 140
Angle (deg)

* Non-parametric force fields are always more accurate than parametric

counterparts

* A confidence level can also be predicted, this can help to avoid extrapolation




Automatic force field construction

|. Obtain an inrtial database for your system

2. Choose the of the interaction needed
(2-body, 3-body, ...)

3. Train a Gaussian Process regression with an

4. and save the learned potential onto
the effective degrees of freedom

o} the tabulated points to yield the
n-body potential energy

6. Predict the energy of a new configuration
with the as a classical
potential



Automatic force field

|. Obtain an inrtial database for your system

2. Choose the order of the interaction needed
(2-body, 3-body, ...)

3. Train a Gaussian Process regression with an
n-body kernel

4. Tabulate and save the learned potential onto
the effective degrees of freedom

O. Interpolate the tabulated points to yield the
n-body potential energy

6. Predict the energy of a new configuration
with the learned n-body as a classical

potential -

construction

RN

In the MFF package

MFF's documentation

o Requirements
oooooo
.......

o Fitting the model

https://github.com/kcl-tscm/mff/
blob/master/tutorials/
Tutorial nanoparticles.ipynb




Automatic force field

|. Obtain an inrtial database for your system

2. Choose the order of the interaction needed
(2-body, 3-body, ...)

3. Train a Gaussian Process regression with an
n-body kernel

4. Tabulate and save the learned potential onto
the effective degrees of freedom

O. Interpolate the tabulated points to yield the
n-body potential energy

6. Predict the energy of a new configuration
with the learned n-body as a classical

potential -

(7.1t the GP uncertainty is too large, run an
addrtional quantum calculation)

construction

RN

In the MFF package

MFF's documentation

o Requirements
oooooo
-------

o Fitting the model

https://github.com/kcl-tscm/mff/
blob/master/tutorials/
Tutorial nanoparticles.ipynb




Nanocluster MD

0.5 7
0.45 Nanoliquid ‘ .
0.4 i l -
: . 0.35 T i L “
GP was trained on a set of Ni [9 o !
nanoparticles. 2 025 | Olush .
o 0.2 L ® penta
o . . 0.15 e mixed T
3-body MFF containing information of RN
: Nanosolid ] |
000 configurations. 005 | 0T ® i ! | P
0 i ! O ? o
. 300 400 500 600 700 800 900 1000 1100 1200
Melting of Nil9 was observed, the Temperature K]

presence of a confirmed.

MD steps were simulated in
4 days on a 24 cores.

- With DFT 1t would have taken 2000
years:

C. Zeni, K Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita,
Building machine learning force fields for nanoclusters (JCP 2018)
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- With DFT 1t would have taken 2000
years:

C. Zeni, K Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita,
Building machine learning force fields for nanoclusters (JCP 2018)



.7 N
/ N
/ N
7 \
/ O \
/ \
'
1
|
\
\

/
\ /
\ ’
\ O ’
N O ’
~ -

ky(p,p') = J dRk,(p, Rp")
0OQ3)

Inp(e | p, A,)

W~
o
=}

Prediction time (s
[\]
S

0 o e
T T T T T T
0 100 200 300 400 500
Number of training points, N

Conclusions

For robustness and interpretability, we need to be able to
the of learning algorithms

A way to do so Is to Include all physical symmetries and
appropriately the modelled

This can be done within GP regression by using fully
symmetric

are often found to be sufficiently
accurate and should hence be selected for their better

extrapolation properties

Furthermore thelir predict ions can be onto
explicit bases, giving rise to fast and accurate MFFs:
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