Gaussian Processes for Force Fields

Aldo Glielmo, Claudio Zeni
Physics Department, King's College London

EPSRC
Engineering and Physical Sciences Research Council

Part I

Bayesian inference and Gaussian process regression

Aldo Glielmo
Physics Department, King's College London

The aim of classical potentials

References:

Skinnert et al. Mod. \& Sim. in Materials (1994)
Behler, J., \& Parrinello, M. PRL (2007)
Bartók et al. PRL (20।0)
Li, Z., Kermode, J. R., \& De Vita, A. PRL (2015)

The aim of classical potentials

Systematic approaches to implicitly model the electronic degrees of freedom

References:

$$
E=E\left(\left\{\mathbf{r}_{i}\right\} \mid \varepsilon_{0}\right)
$$

Skinnert et al. Mod. \& Sim. in Materials (1994)
Behler, J., \& Parrinello, M. PRL (2007)
Bartók et al. PRL (20।0)
Li, Z., Kermode, J. R., \& De Vita, A. PRL (2015)

Learning force fields: problem setup

- Quantum system of N atoms
at a specific time

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Learning force fields: problem setup

- Quantum system of N atoms

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Learning force fields: problem setup

- Quantum system of N atoms

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Learning force fields: problem setup

- Quantum system of N atoms
at a specific time

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Learning force fields: problem setup

- Quantum system of N atoms at a specific time

Input Space:

- Configuration $\boldsymbol{\rho}$
- $3 x M$ dimensional
- typically M~ 30-40
- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Learning force fields: problem setup

- Quantum system of N atoms at a specific time

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Input Space:

- Configuration ρ
- 3xM dimensional
- typically M~30-40

Output space:

- Local energy $\boldsymbol{\varepsilon}$ of central atom
- The force \mathbf{f} is obtained through differentiation
$\stackrel{\text { f }}{ } \downarrow$
Force

Learning force fields: problem setup

- Quantum system of N atoms at a specific time

- The computational cost of calculating energies and forces scales badly with N and also has high prefactors

Input Space:

- Configuration $\boldsymbol{\rho}$
- 3xM dimensional
- typically M~ 30-40

Output space:

- Local energy ε of central atom
- The force \mathbf{f} is obtained through differentiation

f \downarrow
Force
- The function \mathbf{f} to be learned gives the force as a function of the local configuration ρ around a central atom
- The existence of such map can be assumed in most physical systems
- Linear scaling with N is guaranteed by the locality of the representation

Traditional approach

- The traditional way of fitting potential energies and forces involves a lengthy trial and error procedure of careful selection of meaningful parametric functional forms

Traditional approach

A Lennard-Jones parametric potential

- The traditional way of fitting potential energies and forces involves a lengthy trial and error procedure of careful selection of meaningful parametric functional forms

Traditional approach

A Lennard-Jones parametric potential

- The traditional way of fitting potential energies and forces involves a lengthy trial and error procedure of careful selection of meaningful parametric functional forms

Table 1

Optimized values of fitting parameters of the EAM potentials for Ni, Al and $\mathrm{Ni}_{3} \mathrm{Al}$

A1		Ni		$\mathrm{Ni}_{3} \mathrm{Al}$	
Parameter	Value	Parameter	Value	Parameter	Value
$r_{\mathrm{c}}(\mathrm{nm})$	0.6725	$r_{\mathrm{c}}(\mathrm{nm})$	0.5168	$r_{\mathrm{c}}(\mathrm{nm})$	0.6500
$h_{\text {c }}(\mathrm{nm})$	0.3294	$h_{\text {c }}(\mathrm{nm})$	0.3323	$h_{\mathrm{c}}(\mathrm{nm})$	0.2658
$V_{0}(\mathrm{eV})$	-3.5032×10^{3}	$V_{0}(\mathrm{eV})$	-3.5126×10^{3}	$V_{0}(\mathrm{eV})$	0.6068
$r_{1}(\mathrm{~nm})$	0.2858	$r_{1}(\mathrm{~nm})$	3.8673×10^{-5}	$r_{1}(\mathrm{~nm})$	0.4834
b_{1}	8.5951×10^{-2}	b_{1}	4.7067×10^{-3}	b_{1}	2.9013
b_{2}	5.0124×10^{-2}	b_{2}	0.15106	b_{2}	1.0001
$\delta(\mathrm{eV})$	3.7503×10^{3}	$\delta(\mathrm{eV})$	3.6046×10^{3}	$\delta(\mathrm{eV})$	-3.4108
	2.0080×10^{1}	y	1.9251×10^{1}		
$\gamma(1 / \mathrm{nm})$	4.2799×10^{1}	$\gamma(1 / \mathrm{nm})$	1.6802×10^{3}	$g_{\mathrm{Ni}}(\mathrm{eV})$	5.8549×10^{1}
$B_{0}(\mathrm{~nm})$	1.1927×10^{4}	$B_{0}(\mathrm{~nm})$	1.1914×10^{4}	$g_{\text {Al }}(\mathrm{eV})$	-1.8162×10^{1}
$C_{0}\left(1 / \mathrm{nm}^{3}\right)$	8.6029×10^{1}	$C_{0}\left(1 / \mathrm{nm}^{3}\right)$	2.0329×10^{2}		
$r_{0}(\mathrm{~nm})$	5.2755×10^{-2}	$r_{0}(\mathrm{~nm})$	-0.3138		
β	0.4890×10^{-2}	β	0.4890×10^{-2}		

Typical table of parameters of an EAM potential (from Mishin, Acta Materiali (2004))

The "new" data-driven approach

- Very flexible models able to capture much more information from data

The "new" data-driven approach

```
PHYSICAL REVIEW LETTERS
Highlights Recent Accepted Collections Authors Referees Search Press About
```

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces

Jörg Behler and Michele Parrinello
Phys. Rev. Lett. 98, 146401 - Published 2 April 2007
PHYSICAL REVIEW LETTERS
Highlights Recent Accepted Collections Authors Referees Search Press About

Featured in Physics
Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi
Phys. Rev. Lett. 104, 136403 - Published 1 April 2010
1994
IOPScience Journals Books Publishing Support Login
Modelling and Simulation in Materials Science and Engineering

Neural networks in computational materials science:
training algorithms
A J Skinner and J Q Broughton

"Our long term goal in applying neural networks is to demonstrate that they can be used to interpolate complex and expensive $a b$ initio databases that describe interactions between atoms."

- Very flexible models able to capture much more information from data

Bayesian inference 101

Bayesian inference 101

D
Dataset (e.g. configurations and forces from a DFT calculation)
$p(f)$
Prior: Our beliefs about the function before we observe any data
(e.g., a Lennard Jones with Gaussian distributed parameters)

Bayesian inference 101

$\mathscr{D} \quad$ Dataset (e.g. configurations and forces from a DFT calculation)
$p(f) \quad$ Prior: Our beliefs about the function before we observe any data (e.g., a Lennard Jones with Gaussian distributed parameters)
$p(\mathscr{D} \mid f) \quad$ Likelihood:The probability to observe the data given a model prediction

Bayesian inference 101

$\mathscr{D} \quad$ Dataset (e.g. configurations and forces from a DFT calculation)
$p(f) \quad$ Prior: Our beliefs about the function before we observe any data
(e.g., a Lennard Jones with Gaussian distributed parameters)
$p(\mathscr{D} \mid f) \quad$ Likelihood:The probability to observe the data given a model prediction
$p(f \mid \mathscr{D}) \quad$ Posterior: Our beliefs about the function after we have observe any data

Bayesian inference 101

$\mathscr{D} \quad$ Dataset (e.g. configurations and forces from a DFT calculation)
$p(f) \quad$ Prior: Our beliefs about the function before we observe any data (e.g., a Lennard Jones with Gaussian distributed parameters)
$p(\mathscr{D} \mid f) \quad$ Likelihood:The probability to observe the data given a model prediction
$p(f \mid \mathscr{D}) \quad$ Posterior: Our beliefs about the function after we have observe any data

Posterior

Probabilistic interpretation of least squares

> Bayes' Theorem
> $p(\mathbf{w} \mid \mathscr{D}) \propto \frac{p(\mathscr{D} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathscr{D})}$

Probabilistic interpretation of least squares

Bayes' Theorem

$p(\mathbf{w} \mid \mathscr{D}) \propto \frac{p(\mathscr{D} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathscr{D})}$
Regularised squared error loss

$$
L(\mathbf{w})=\sum_{i}\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2}+\alpha\|\mathbf{w}\|^{2}
$$

Probabilistic interpretation of least squares

Bayes' Theorem
$p(\mathbf{w} \mid \mathscr{D}) \propto \frac{p(\mathscr{D} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathscr{D})}$
Regularised squared error loss

$$
L(\mathbf{w})=\sum_{i}\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2}+\alpha\|\mathbf{w}\|^{2}
$$

Gaussian prior and Gaussian likelihood
$p(\mathbf{w}) \propto e^{-\|\mathbf{w}\|^{2} / 2 \sigma_{\mathbf{w}}^{2}}$
$p\left(f_{i} \mid \mathbf{w}\right) \propto e^{-\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2} / 2 \sigma_{f}^{2}}$

Probabilistic interpretation of least squares

Bayes' Theorem
$p(\mathbf{w} \mid \mathscr{D}) \propto \frac{p(\mathscr{D} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathscr{D})}$
Regularised squared error loss

$$
L(\mathbf{w})=\sum_{i}\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2}+\alpha\|\mathbf{w}\|^{2}
$$

Gaussian prior and Gaussian likelihood

$$
p(\mathbf{w}) \propto e^{-\|\mathbf{w}\|^{2} / 2 \sigma_{\mathbf{w}}^{2}}
$$

$p\left(f_{i} \mid \mathbf{w}\right) \propto e^{-\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2} / 2 \sigma_{f}^{2}}$

$$
-\ln p(\mathbf{w} \mid \mathscr{D}) \propto \sum_{i}\left\|f_{i}-f_{\mathbf{w}}\left(\rho_{i}\right)\right\|^{2}+\frac{\sigma_{f}^{2}}{\sigma_{\mathbf{w}}^{2}}\|\mathbf{w}\|^{2}
$$

Minimising a regularised squared loss corresponds to maximising a posterior distribution!

Prior

[Rasmussen and Williams 2006]

Posterior

Prior information

$$
p(f \mid \mathscr{D}) \propto p(\mathscr{D} \mid f) p(f) \mid
$$

Likelihood
$\mathscr{D}=(\rho, \mathbf{f})_{1},(\rho, \mathbf{f})_{2}$,
Traditional approaches:

- High prior information (parametric functional forms)
- Hence:

X limited in their accuracy if prior is wrong
\checkmark simple to interpret
\checkmark very fast
\checkmark tend to be more transferable

New ML approaches:

- Low prior information (Neural Networks, non parametric regression)
- Hence:
\checkmark very flexible (potentially very accurate)
X difficult to interpret
X relatively slow
X transferability can be problematic

For robustness, for interpretability, and since we will never have infinite data:
We need a way to select the appropriate model complexity

Gaussian process prior

A Gaussian process can be used as prior distribution $p(f(\rho))=\mathscr{G} \mathscr{P}\left(0, k\left(x, x^{\prime}\right)\right)$

Gaussian process prior

A Gaussian process can be used as prior distribution
$p(f(\rho))=\mathscr{G} \mathscr{P}\left(0, k\left(x, x^{\prime}\right)\right)$

Using a Gaussian likelihood, the posterior Gaussian process can be found analytically
$p(f(x) \mid \mathscr{D})=\mathscr{G} \mathscr{P}\left(\hat{f}(x), \hat{k}\left(x, x^{\prime}\right)\right)$
$\hat{f}(x)=\sum_{i=1}^{N} k\left(x, x_{i}\right) \alpha_{i} \quad$ Predictions
$\hat{\sigma}^{2}(x)=\hat{k}(x, x)$
Predicted variance (measure of uncertainty)

Gaussian process prior

A Gaussian process can be used as prior distribution $p(f(\rho))=\mathscr{G} \mathscr{P}\left(0, k\left(x, x^{\prime}\right)\right)$

Using a Gaussian likelihood, the posterior Gaussian process can be found analytically
$p(f(x) \mid \mathscr{D})=\mathscr{G} \mathscr{P}\left(\hat{f}(x), \hat{k}\left(x, x^{\prime}\right)\right)$
$\hat{f}(x)=\sum_{i=1}^{N} k\left(x, x_{i}\right) \alpha_{i} \quad$ Predictions
$\hat{\sigma}^{2}(x)=\hat{k}(x, x)$
Predicted variance (measure of uncertainty)

- Very flexible regression model (provably equivalent to a NN with a single, infinite hidden layer)
- Principled uncertainty predictions (crucial for transferability and validation)
- Prior knowledge can be included into the kernel function

GP visualisation

Squared exponential kernel with length scale ℓ
$k(x, x)=e^{-\left(x-x^{\prime}\right)^{2} / 2 \ell^{2}}$

Gaussian likelihood with "noise" parameter σ_{n}^{2}
$p\left(f_{i} \mid f\left(x_{i}\right)\right) \propto e^{-\left(f_{i}-f\left(x_{i}\right)\right)^{2} / 2 \sigma_{n}^{2}}$

Animation by

Dr. Ádám Fekete King's College London
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gpvisualisation.ipynb

GP visualisation

Squared exponential kernel with length scale ℓ
$k(x, x)=e^{-\left(x-x^{\prime}\right)^{2} / 2 \ell^{2}}$

Gaussian likelihood with "noise" parameter σ_{n}^{2}
$p\left(f_{i} \mid f\left(x_{i}\right)\right) \propto e^{-\left(f_{i}-f\left(x_{i}\right)\right)^{2} / 2 \sigma_{n}^{2}}$

Animation by

Dr. Ádám Fekete King's College London
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gpvisualisation.ipynb

Posterior Gaussian process

GP learning: design of kernel function

- A Gaussian Process regression assumes a normal distribution for $p(\varepsilon(\rho))$, a $G P$

$$
p(\varepsilon(\rho))=\mathscr{G P}\left(0, k\left(\rho, \rho^{\prime}\right)\right)
$$

- Kernels should respects all the symmetries of the force and possess a controllable degree of prior information

GP learning: design of kernel function

- A Gaussian Process regression assumes a normal distribution for $p(\varepsilon(\rho))$, a $G P$

$$
p(\varepsilon(\rho))=\mathscr{G} \mathscr{P}\left(0, k\left(\rho, \rho^{\prime}\right)\right)
$$

- Kernels should respects all the symmetries of the force and possess a controllable degree of prior information

Symmetries

- Symmetry properties should be encoded into the kernel function

Interaction Order

- Interaction order can also be encoded into the kernel, controlling the degree of complexity

$$
\frac{\partial^{n} k_{n}\left(\rho, \rho^{\prime}\right)}{\partial \mathbf{r}_{1} \cdots \partial \mathbf{r}_{n}}=0
$$

3- and 5-body interactions

Part II

Choice of kernel function and computational speedups

Claudio Zeni

Physics Department, King's College London

GP learning: design of kernel function

- A Gaussian Process regression assumes a normal distribution for $p(\varepsilon(\rho))$, a $G P$

$$
p(\varepsilon(\rho))=\mathscr{G} \mathscr{P}\left(0, k\left(\rho, \rho^{\prime}\right)\right)
$$

- Kernels should respects all the symmetries of the force and possess a controllable degree of prior information

Symmetries

- Symmetry properties should be encoded into the kernel function

Interaction Order

- Interaction order can also be encoded into the kernel, controlling the degree of complexity

$$
\frac{\partial^{n} k_{n}\left(\rho, \rho^{\prime}\right)}{\partial \mathbf{r}_{1} \cdots \partial \mathbf{r}_{n}}=0
$$

3- and 5-body interactions

Building n-body kernels

Building n-body kernels

- Permutation invariant representation of a local environment

$$
\rho\left(\mathbf{r},\left\{\mathbf{r}_{i}\right\}\right)=\sum_{i=1}^{M} \mathscr{N}\left(\mathbf{r}_{i}, \sigma^{2}\right)=
$$

- Dot product induces a 2-body kernel

$$
k_{2}\left(\rho, \rho^{\prime}\right)=\int d \mathbf{r} \rho(\mathbf{r}) \rho^{\prime}(\mathbf{r})=
$$

Building n-body kernels

- Permutation invariant representation of a local environment

$$
\rho\left(\mathbf{r},\left\{\mathbf{r}_{i}\right\}\right)=\sum_{i=1}^{M} \mathscr{N}\left(\mathbf{r}_{i}, \sigma^{2}\right)=
$$

- Dot product induces a 2-body kernel

$$
k_{2}\left(\rho, \rho^{\prime}\right)=\int d \mathbf{r} \rho(\mathbf{r}) \rho^{\prime}(\mathbf{r})=
$$

- Haar integration imposes rotational symmetry

$$
k_{n}^{s}\left(\rho, \rho^{\prime}\right)=\int_{O(3)} d \mathscr{R} k_{n}\left(\rho, \mathscr{R} \rho^{\prime}\right) \quad \sim k_{n}(\rho)
$$

Building n-body kernels

- Permutation invariant representation of a local environment

$$
\rho\left(\mathbf{r},\left\{\mathbf{r}_{i}\right\}\right)=\sum_{i=1}^{M} \mathscr{N}\left(\mathbf{r}_{i}, \sigma^{2}\right)=
$$

- Dot product induces a 2-body kernel

$$
k_{2}\left(\rho, \rho^{\prime}\right)=\int d \mathbf{r} \rho(\mathbf{r}) \rho^{\prime}(\mathbf{r})=
$$

- Haar integration imposes rotational symmetry

$$
k_{n}^{s}\left(\rho, \rho^{\prime}\right)=\int_{O(3)} d \mathscr{R} k_{n}\left(\rho, \mathscr{R} \rho^{\prime}\right) \quad \sim k_{n}(\rho)
$$

SOAP kernel

- Start by representing the environment of an atom as its neighbour density

$$
\rho(\mathbf{r})=\sum_{i=1}^{M} \mathcal{N}\left(\mathbf{r}_{i}, \sigma^{2}\right) f_{c u t}\left(\left|\mathbf{r}_{i}\right|\right)
$$

SOAP kernel

- Start by representing the environment of an atom as its neighbour density

$$
\rho(\mathbf{r})=\sum_{i=1}^{M} \mathcal{N}\left(\mathbf{r}_{i}, \sigma^{2}\right) f_{c u t}\left(\left|\mathbf{r}_{i}\right|\right)
$$

- Expand the neighbour density in a basis of spherical harmonics and radial functions:

$$
\rho(\mathbf{r})=\sum_{n l m} c_{l m n}^{i} Y_{l m}(\hat{\mathbf{r}}) g_{n}(r)
$$

SOAP kernel

- Start by representing the environment of an atom as its neighbour density

$$
\rho(\mathbf{r})=\sum_{i=1}^{M} \mathcal{N}\left(\mathbf{r}_{i}, \sigma^{2}\right) f_{c u t}\left(\left|\mathbf{r}_{i}\right|\right)
$$

- Expand the neighbour density in a basis of spherical harmonics and radial functions:

$$
\rho(\mathbf{r})=\sum_{n l m} c_{l m n}^{i} Y_{l m}(\hat{\mathbf{r}}) g_{n}(r)
$$

- Take the power spectrum and normalize it:

$$
\tilde{p}_{n n^{\prime} l}=\sum_{m=-l}^{l} c_{n l m}^{i *} c_{n^{\prime} l m}^{i} \quad \mathbf{p}^{i}=\tilde{\mathbf{p}}^{\mathbf{i}} /\left|\widetilde{\mathbf{p}}^{\mathbf{i}}\right|
$$

SOAP kernel

- Start by representing the environment of an atom as its neighbour density

$$
\rho(\mathbf{r})=\sum_{i=1}^{M} \mathcal{N}\left(\mathbf{r}_{i}, \sigma^{2}\right) f_{\text {cut }}\left(\left|\mathbf{r}_{i}\right|\right)
$$

- Expand the neighbour density in a basis of spherical harmonics and radial functions:

$$
\rho(\mathbf{r})=\sum_{n l m} c_{l m n}^{i} Y_{l m}(\hat{\mathbf{r}}) g_{n}(r)
$$

- Take the power spectrum and normalize it:

$$
\tilde{p}_{n n^{\prime} l}=\sum_{m=-l}^{l} c_{n l m}^{i *} c_{n}^{i}{ }^{i} m \quad \mathbf{p}^{i}=\tilde{\mathbf{p}}^{\mathbf{i}} /\left|\tilde{\mathbf{p}}^{\mathbf{i}}\right|
$$

- The SOAP kernel is the scalar product elevated to an integer power:

$$
k\left(\mathbf{r}_{\mathbf{i}}, \mathbf{r}_{\mathbf{j}}\right)=A^{2}\left|\mathbf{p}^{i} \cdot \mathbf{p}^{j}\right|^{\xi}
$$

Machine Learning a General-Purpose Interatomic Potential for Silicon

Machine Learning a General-Purpose Interatomic Potential for Silicon
A. P. Bartók, J. Kermode, N. Bernstein, G. Csányi (PRX 2018)

Explicit n-body kernels

$$
\begin{aligned}
& k_{2}^{s}\left(\rho, \rho^{\prime}\right)=\sum_{\substack{i \in \rho \\
j \in \rho^{\prime}}} \mathrm{e}^{-\left(r_{i}-r_{j}^{\prime}\right)^{2} / 2 \ell^{2}}, \\
& k_{3}^{s}\left(\rho, \rho^{\prime}\right)=\sum_{\substack{i_{1}>i_{2} \in \rho \\
j_{1}>j_{2} \in \rho^{\prime}}} \sum_{\mathbf{P} \in \mathcal{P}} \mathrm{e}^{-\left\|\left(r_{i_{1}}, r_{i_{2}}, r_{i_{1} i_{2}}\right)^{\mathrm{T}}-\mathbf{P}\left(r_{j_{1}}^{\prime}, r_{j_{2}}^{\prime}, r_{j_{1} j_{2}}^{\prime}\right)^{\mathrm{T}}\right\|^{2} / 2 \ell^{2}} .
\end{aligned}
$$

$$
k_{M B}^{s}\left(\rho, \rho^{\prime}\right)=\mathrm{e}^{-\left(k_{3}^{s}(\rho, \rho)+k_{3}^{s}\left(\rho^{\prime}, \rho^{\prime}\right)-2 k_{3}^{s}\left(\rho, \rho^{\prime}\right)\right) / 2 \ell^{2}}
$$

- Simple low-n kernels can be easily constructed directly on invariant degrees of freedom
- Very intuitive and computationally efficient!

Choosing the interaction order: heuristics

Amorphous Silicon: learning curves

- GP-FFs are always sensibly more accurate on target forces than traditional FFs
- Learning with a higher order kernel is more accurate but requires more data
- The optimal order depends on the material and it can be chosen as the smallest \boldsymbol{n} compatible with target accuracy
- Low order models are often optimal

Choosing the interaction order: marginal lik.

- The optimal interaction order can also be selected as the one achieving the maximal marginal likelihood

$$
\begin{aligned}
& \text { Marginal likelihood } \\
& \ln p\left(\varepsilon \mid \rho, \mathscr{M}_{n}\right) \propto-\frac{1}{2} \varepsilon^{\mathrm{T}} \mathbf{K}_{n}^{-1} \varepsilon-\frac{1}{2} \ln \left|\mathbf{K}_{n}\right| \\
& \text { Fit Complexity }
\end{aligned}
$$

Nickel systems: marginal likelihood

AG, C. Zeni, A. Fekete, A. De Vita,
Bayesian construction of n-body force fields via Gaussian process regression

Speeding up low order models

- n-body kernels predictions can be decomposed in n-body contributions
- Hence one can tabulate the GP over the degrees of freedom of n particles (e.g. distances and angles) obtaining a very fast non-parametric n-body force field
- This mapped force field (MFF) is identical to the original one but substantially faster

Mapping: Convergence of the MFF to the GP force field as a function of the number of grid points

Speedup: Prediction time of GP potential and remapped potential vs N (number of training points)

C. Zeni, K. Rossi, AG, A. Fekete, N Gaston, F Baletto, A. De Vita, Building machine learning force fields for nanoclusters (JCP 2018)

Examples of MFFs

Copper: Learnt 2-body MFF

a-Si: Learnt 3-body MFF

- Non-parametric force fields are always more accurate than parametric counterparts
- A confidence level can also be predicted, this can help to avoid extrapolation

Automatic force field construction

I. Obtain an initial database for your system
2. Choose the order of the interaction needed (2-body, 3-body, ...)
3. Train a Gaussian Process regression with an n-body kernel
4. Tabulate and save the learned potential onto the effective degrees of freedom \mathbf{q}
5. Interpolate the tabulated points to yield the n-body potential energy
6. Predict the energy of a new configuration with the learned n-body as a classical potential

Automatic force field construction

1. Obtain an initial database for your system
2. Choose the order of the interaction needed (2-body, 3-body, ...)
3. Train a Gaussian Process regression with an n-body kernel
4. Tabulate and save the learned potential onto the effective degrees of freedom \mathbf{q}
5. Interpolate the tabulated points to yield the n-body potential energy
6. Predict the energy of a new configuration with the learned n-body as a classical potential

https://github.com/kcl-tscm/mff/

Automatic force field construction

I. Obtain an initial database for your system
2. Choose the order of the interaction needed (2-body, 3-body, ...)
3. Train a Gaussian Process regression with an n-body kernel
4. Tabulate and save the learned potential onto the effective degrees of freedom \mathbf{q}
5. Interpolate the tabulated points to yield the n-body potential energy
6. Predict the energy of a new configuration with the learned n-body as a classical potential
(7. If the GP uncertainty is too large, run an additional quantum calculation)

https://github.com/kcl-tscm/mff/

Nanocluster MD

- GP was trained on a set of Ni 19 nanoparticles.
- 3-body MFF containing information of 1000 configurations.
- Melting of Nil9 was observed, the presence of a slush state confirmed.
- 61 million MD steps were simulated in 4 days on a 24 cores.
- With DFT it would have taken 2000 years: 10^{6} speed factor.

Nanocluster MD

- GP was trained on a set of Ni 19 nanoparticles.
- 3-body MFF containing information of 1000 configurations.
- Melting of Nil9 was observed, the presence of a slush state confirmed.
- 61 million MD steps were simulated in 4 days on a 24 cores.
- With DFT it would have taken 2000 years: 10^{6} speed factor.

Conclusions

- For robustness and interpretability, we need to be able to control the complexity of learning algorithms
- A way to do so is to include all physical symmetries and appropriately restrict the modelled interaction order
$k_{n}^{s}\left(\rho, \rho^{\prime}\right)=\int_{O(3)} d \mathscr{R} k_{n}\left(\rho, \mathscr{R} \rho^{\prime}\right)$
- This can be done within GP regression by using fully symmetric n-body kernels
- Low order models are often found to be sufficiently accurate and should hence be selected for their better extrapolation properties
- Furthermore their predict ions can be mapped onto explicit bases, giving rise to fast and accurate MFFs: nonparametric force fields

People we need to thank

Prof. Alessandro De Vita King's College London, University of Trieste

Dr. Ádám Fekete
King's College London

Questions?

