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Ĥ ∣ ϕ0⟩ = ε0 ∣ ϕ0⟩

References:
- Skinnert et al.  Mod. & Sim. in Materials (1994 )
- Behler, J., & Parrinello, M. PRL (2007)
- Bartók et al. PRL (2010)
- Li, Z., Kermode, J. R., & De Vita, A. PRL (2015)

ML Potentials: 
Systematic approaches to implicitly model 
the electronic degrees of freedom
E = E({ri} ∣ ε0)
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Cutoff

• The function f to be learned gives the force as a function of the local configuration 
ρ around a central atom

• The existence of such map can be assumed in most physical systems 
• Linear scaling with N is guaranteed by the locality of the representation
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Traditional approach

Typical table of parameters of an EAM potential  (from Mishin, Acta Materiali (2004))

• The traditional way of fitting potential energies 
and forces involves a lengthy trial and error 
procedure of  careful selection of meaningful 
parametric functional forms

A Lennard-Jones parametric potential
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The “new” data-driven approach

• Very flexible models able to capture much more information from data

2007

2010

“Our long term goal in applying neural networks is to 
demonstrate that they can be used to interpolate 
complex and expensive ab initio databases that 
describe interactions between atoms.”

1994
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𝒟 Dataset (e.g. configurations and forces from a DFT calculation)

Prior: Our beliefs about the function before we observe any data 

(e.g., a Lennard Jones with Gaussian distributed parameters)

Posterior: Our beliefs about the function after we have observe any datap( f ∣ 𝒟)

Likelihood: The probability to observe the data given a model prediction

Prior Posterior

p( f ∣ 𝒟) =
p(𝒟 ∣ f )p( f )

p(𝒟)

[Rasmussen and Williams 2006 ]

Bayes’  Theorem
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p( fi ∣ w) ∝ e−∥fi−fw(ρi)∥2/2σ2
f
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w

Regularised squared error loss

Gaussian prior and Gaussian likelihood

Minimising a regularised squared loss 

corresponds to maximising a 

posterior distribution!
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Bayes’  Theorem
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Prior information
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Prior information
p( f ∣ 𝒟) ∝ p(𝒟 ∣ f )p( f )

[Rasmussen and Williams 2006 ]

PriorPosterior

Traditional approaches:
• High prior information (parametric 

functional forms)
• Hence: 

limited in their accuracy if prior is 
wrong
simple to interpret

very fast

tend to be more transferable

New ML approaches:
• Low prior information (Neural 

Networks, non parametric regression)
• Hence: 

very flexible (potentially very 
accurate)

difficult to interpret 
relatively slow
transferability can be problematic

Likelihood
D = {(⇢, f)i, i = 1, . . . , N}

1
D = {(⇢, f)i, i = 1, . . . , N}

2
𝒟 = , , …

For robustness, for interpretability, and since we will never have infinite data:
We need a way to select the appropriate model complexity



Gaussian process prior
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Gaussian process prior
A Gaussian process can be used as prior distribution

• Very flexible regression model (provably equivalent to a NN with a single, infinite hidden 
layer)

• Principled uncertainty predictions (crucial for transferability and validation)

• Prior knowledge can be included into the kernel function

p( f(ρ)) = 𝒢𝒫(0,k(x, x′�))

Predictions
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Using a Gaussian likelihood,
the posterior Gaussian process can be found analytically

̂f(x) =
N

∑
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̂σ2(x) = ̂k(x, x) Predicted variance (measure of uncertainty)
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GP visualisation

Squared exponential kernel with length scale 

Dr. Ádám Fekete 
King’s College London

Gaussian likelihood with “noise”  parameter 

k(x, x) = e−(x−x′�)2/2ℓ2

Animation by

p( fi ∣ f(xi)) ∝ e−( fi−f(xi))2/2σ2
n

ℓ

σ2
n

https://mybinder.org/v2/gh/fekad/gp-
visualisation.git/master?filepath=gp-
visualisation.ipynb

https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
https://mybinder.org/v2/gh/fekad/gp-visualisation.git/master?filepath=gp-visualisation.ipynb
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Posterior Gaussian process ?
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• Kernels should respects all the symmetries of the force and possess a controllable 
degree of prior information
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• Interaction order can also be encoded 
into the kernel, controlling the degree of 
complexity

∂nkn(ρ, ρ′�)
∂r1⋯∂rn

= 0

3- and 5-body interactions

Symmetries

• Symmetry properties should be encoded 
into the kernel function

2
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1
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ℛρ

1
2

ρ k(𝒫ρ, 𝒫′�ρ′�) = k(ρ, ρ′�)

k(ℛρ, ℛ′�ρ′�) = k(ρ, ρ′�)

Permutation invariance

Rotation invariance
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Building n-body kernels
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SOAP kernel
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• The SOAP kernel is the scalar product elevated to an integer power:

𝑘(𝐫𝐢,  𝐫𝐣) = 𝐴2 𝐩𝑖 · 𝐩𝑗 ξ



Machine Learning a General-Purpose Interatomic 
Potential for Silicon
A. P. Bartók, J. Kermode, N. Bernstein, G. Csányi 
(PRX 2018)
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Explicit n-body kernels

• Simple low-n kernels can be easily 
constructed directly on invariant degrees 
of freedom

• Very intuitive and computationally 
efficient!
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Choosing the interaction order: heuristics

AG, C. Zeni, A. De Vita, 
Efficient non-parametric n-body force fields from machine learning (PRB 2018)

• GP-FFs are always sensibly more accurate on target forces than traditional FFs 

• Learning with a higher order kernel is more accurate but requires more data

• The optimal order depends on the material and it can be chosen as the smallest n 
compatible with target accuracy 

•  Low order models are often optimal
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Choosing the interaction order: marginal lik.

ln𝑝(𝜺 ∣ 𝝆, ℳ𝑛) ∝ −
1
2

𝜺T𝐊−1
𝑛 𝜺 −

1
2

ln |𝐊𝑛 |
Marginal likelihood

Fit Complexity

• The optimal interaction order can also 
be selected as the one achieving the 
maximal marginal likelihood
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AG, C. Zeni, A. Fekete, A. De Vita, 
Bayesian construction of n-body force fields via Gaussian process regression 

Nickel systems: marginal likelihood



Speeding up low order models
• n-body kernels predictions can be decomposed in n-body contributions 

• Hence one can tabulate the GP over the degrees of freedom of n particles (e.g. 
distances and angles) obtaining a very fast non-parametric n-body force field

• This mapped force field (MFF) is identical to the original one but substantially faster

Speedup: Prediction time of GP potential 
and remapped potential vs N (number of 
training points)
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Mapping: Convergence of the MFF to the 
GP force field as a function of the number 
of grid points
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Examples of MFFs
Copper: Learnt 2-body MFF
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• Non-parametric force fields are always more accurate than parametric 
counterparts

• A confidence level can also be predicted, this can help to avoid extrapolation

a-Si: Learnt 3-body MFF



Automatic force field construction
1. Obtain an initial database for your system

2. Choose the order of the interaction needed 
(2-body, 3-body, …)

3. Train a Gaussian Process regression with an 
n-body kernel

4. Tabulate and save the learned potential onto 
the effective degrees of freedom q

5. Interpolate the tabulated points to yield the 
n-body potential energy 

6. Predict the energy of a new configuration 
with the learned n-body as a classical 
potential 
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In the MFF package

https://github.com/kcl-tscm/mff/
blob/master/tutorials/

Tutorial_nanoparticles.ipynb



Automatic force field construction
1. Obtain an initial database for your system

2. Choose the order of the interaction needed 
(2-body, 3-body, …)

3. Train a Gaussian Process regression with an 
n-body kernel

4. Tabulate and save the learned potential onto 
the effective degrees of freedom q

5. Interpolate the tabulated points to yield the 
n-body potential energy 

6. Predict the energy of a new configuration 
with the learned n-body as a classical 
potential 

(7. If the GP uncertainty is too large, run an 
additional quantum calculation)

In the MFF package

https://github.com/kcl-tscm/mff/
blob/master/tutorials/

Tutorial_nanoparticles.ipynb



• GP was trained on a set of Ni 19 
nanoparticles.

• 3-body MFF containing information of 
1000 configurations.

• Melting of Ni19 was observed, the 
presence of a slush state confirmed.

• 61 million MD steps were simulated in 
4 days on a 24 cores.

• With DFT it would have taken 2000 
years: 106 speed factor.

Nanocluster MD
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Building machine learning force fields for nanoclusters (JCP 2018)
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Conclusions
• For robustness and interpretability, we need to be able to 

control the complexity of learning algorithms

• A way to do so is to include all physical symmetries and 
appropriately restrict the modelled interaction order

• This can be done within GP regression by using fully 
symmetric n-body kernels

• Low order models are often found to be sufficiently 
accurate and should hence be selected for their better 
extrapolation properties

• Furthermore their predict ions can be mapped onto 
explicit bases, giving rise to fast and accurate MFFs: non-
parametric force fields
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