Locating favorable point defects with active learning

M. Sluydts, M. Larmuseau, S. Cottenier

May 8th 2019

Defect control in Si

Control defects by understanding their nanoscale behavior

Defect positions

Defects are often atomic point defects

High-throughput screening

Number of systems to simulate:

6 defects · 72 dopants · 2 materials · 2 methods = 1728

Results

Period 4 in Si

Results are smooth, do we need to simulate everything?

Problem: look for likely substitutional pairs

Even at near distances: $72 \cdot 72/2 = 2592$ combinations

Find ones with lower energy

Predict results using gaussian process

Uncertainty can be used to decide where to sample next

Active Learning

Generate training data for the predictive model

DFT result

Mean, stddev

Given prediction and uncertainty, which defect is most interesting?

Gaussian process predictions

(a) Hull energy predictions

10% of calculations already gives a very good overview

Gaussian process predictions

The model is most certain in the lowest energy regions

The problem

How do we get to more realistic systems:

- High temperatures: many configurations, requires MD
- Interacting and diffusing defects

Need complex models, able to process large amounts of geometric data

Deep learning

Geometric models: deep learning

Neighbor distances (5 -6 A)

SchNet architecture can fit a smooth potential energy surface

Fit to ab initio MD

Active Learning

Need two ingredients: good predictions and reliable ensembles

Bulk and vacancy in a 64 atom Ge cell

Isolated point defects can be fit well also for high T

Illustrating the energy scale

-18.84 eV/atom

-17.9 eV/atom

111 surface with 224 atoms with T up to 2000 K

Data up to 2000K, energy okay, forces more difficult

13 vacancies in 216 atoms

Training data only includes interactions of up to 3 vacancies

What about uncertainties?

The key challenge is to generate reliable ensembles with limited compute

Conclusions

- Study of defects is important in many solid-state applications
- Active learning can greatly increase the speed of screening
- Deep learning models can handle defect dynamics given enough data
- Reliable and fast uncertainties for deep learning models remain a challenge

SchNet results 2: Molecular Dynamics Si

Thermal expansion good till 1000 K, constant offset (speedup 5k)

SchNet results 1: Si EOS

DFT:

- a = 5.428 Å
- B = 99.69 GPa

Schnet:

• B = 94.52 GPa

Experiment

- a = 5.43 Å
- B = 98.8 GPa

Error on energy of 3 meV/at is comparable to that of DFT

3 Vacancies in 216 atoms

More complex situations require more data