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Virtual discovery
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Increasing computing power

Faster algorithms

More data

Software is already matching (or beating) humans in 
performance and speed

Driverless cars, AlphaGo, virtual assistants, speech & 
image recognition and generation, …



Virtual discovery

Increasing computing power

Faster algorithms

More data
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Software is already matching (or beating) humans in 
performance and speed

Driverless cars, AlphaGo, virtual assistants, speech & 
image recognition and generation, …

What works in materials design?



Computational spectrum - virtuous cycle
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First
Principles

Machine learning
Parametrization

Out-of-the-box
No/Little fitting

Extrapolates
High-throughput
Sometimes cheap

- but -
As good as model
Sometimes costly

Fast
Uncanny performance

Leverage large data

- but -
As good as training data

Expensive / proprietary data

There is essentially a continuum of higher parametrization and statistical learning connecting first 
principles (theory-based simulations) to black-box statistical learning over experiments.

Discovery



Predictive Simulation
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Toy models Quantum / electronic structure Molecular dynamics Continuum models

Experimental observation
Design parameter

Parametrization from experiments



Machine Learning for Materials
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Predictions

N#CC1=C(C(N2C3=C(C4=C2
C=CC=C4)C=CC=C3)=C(C(C#
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=C8C=CC=C%10)C=CC=C9)
N%11C%12=C(C%13=C%11C
=CC=C%13)C=CC=C%12

Text Graph 3D Physical properties Recipe / processing

C56H32N6

SimulationCompositionCode
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Models

Training data



High-throughput virtual screening
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Successful applications
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Organic Light Emitting Diodes
• High end displays, potentially lighting.
• Lightweight, flexible, transparent, high contrast, 

low power 

Organic Flow battery electrolytes
• High-scale energy storage
• Emerging technology, promising low-cost 
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ML for bypassing calculations

5/8/19 10Duvenaud et al. arXiv:1509.09292, https://github.com/HIPS/neural-fingerprint

Simulations 
Are deterministic, reproducible, low-noise, 
and typically faster and cheaper than 
experiments.

Large amounts of labeled data available.

Representations that capture physics. 

Message passing neural networks

Properties from 
expensive 
simulation



Choosing a representation

5/8/19 11Duvenaud et al. arXiv:1509.09292, https://github.com/HIPS/neural-fingerprint

Representation
It is common to embed the physics using features extracted from first principles 
(electronegativity, atomic mass, electronic structure, atomic radius, xyz
coordinates …)

Allows higher data efficiency, better transferability.

But they are not degrees of freedom. If they are not reversible, then the search 
space is not represented.

End-to-end learning from the most basic representations, where we can “move”



Message-Passing Neural networks
Atoms represented as nodes and bonds as distance-labeled edges

Node and edge features updated iteratively based on learned neighborhood mappings

Message, update, and embedding functions are neural networks 

𝑚"#

message function

Add messages from all neighbors

𝑚" = 𝑚"% + 𝑚"# + 𝑚"'

update function

𝑟")

Update fingerprint

{𝑟"), 𝑟%), 𝑟#), 𝑟')}

embedding function

𝑓)
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Message-Passing Neural networks
oTypically achieve state of the art performance over atomic 
QSPR regression problems in chemistry
o Toxicity, solubility, optical properties, band gap, shear moduli, 

etc
o Energy under 1 kcal/mol and forces under 0.1 kcal/mol/A.

oNeeding 1,000-10,000 to be really effective

oCustomized for a given property
o Transferability might not be great.

5/8/19 13
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Message-Passing Neural networks
All sorts of bells and whistles.

• Edge features with Gaussian basis expression of distance
Schutt et al J. Chem. Phys. 148, 241722 (2018)

• Edge updates

• k-GNN (combine with k-neighbor rather than first order) 
Morris et al, arXiv:1810.02244

• Use mean/addition pooling function for very additive 
properties (energies) and concatenation for non-additive 
properties

• Version of periodic crystals
T Xie et al, Physical review letters 120 (14), 145301
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Explore/exploit

Balancing exploration and exploitation.

§Greedy and epsilon greedy do a good job

§Thompson sampling is pretty much 
equivalent

5/8/19 15Jose Miguel Hernández Lobato



Inverse design
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?

Progress in predicting performance given candidate

Can we generate candidate based on design targets?

NNO



Deep generative models
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Nguyen, Dosovitskiy, Yosinski, Brox, Clune 2016

Karras, Aila, Laine, Lehtinen 2018

Unsupervised learning:  Learning from data that has not been 
labeled, classified or categorized. Find a common denominator in 
the data.

In a generative model, we then use that commonality to generate 
novel realistic synthetic samples.



Variational Autoencoder
Artificial neural network used for learning efficient codings. 

Dimensionality reduction or to learn generative models.

The latent space is continuous, derivable and low dimension.

Try to learn identity function through information bottleneck.

5/8/19 18

m z = LΦ(m) pΘ(z)

Diederik P. Kingma and Max Welling. 2015.

The latent representation of an input is not a 
single value, but a distribution:
o Acts as a regularizer, enforcing a more 
homogeneous latent representation
o Need a prior about the distribution of z
(Gaussian, μ = 1, σ = 1)



Chemical Variational Autoencoder

5/8/19 19

Trained on 250,000 drug-like molecules from ZINC database



Dreaming OLEDs
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Trained on HTVS library and patented OLED
No bias, just generation
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Non-linear avigation
The space is very much not 
linear. Most molecules are in 
an annulus far from the 
mean.

SLERP (Spherical 
interpolation) allows taking 
much more sensible steps

5/8/19 22



Semisupervised Molecular VAE

5/8/19 23Gomez-Bombarelli et al. ACS Central Science 2018, 4 (2), 268–276

The latent representation now encodes 
mapping to one or more properties.



Semisupervised performance
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1D Convolutions over SMILES strings 
afford similar performance to neural 
convolutions and graph-based 
representations.



Optimization
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Leverage gradients to inform optimization
Leverage smooth, continuous QSPR
Mix with optimizer of choice



Chemical space is different
Generative models of images rely of human’s prowess in pattern-recognition. 

5/8/19 26

This works … … a bit like this works

Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Jiangang Liu, Jun Li, Lu Feng, 
Ling Li, Jie Tian, Kang Lee 

Radford, Metz, Chintala arXiv:1511.06434v2 2016 



Extensions, upgrades and alternatives
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Character-by-character RNN
Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks, ACS Cent. 
Sci., 2018, 4 (1), pp 120–131
SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules, arXiv:1703.07076 
[cs.LG]
Molecular de-novo design through deep reinforcement learning, Journal of Cheminformatics 2017 9:48
Generative Recurrent Networks for De Novo Drug Design, Molecular informatics 2018 37, - Whole issue!

Better decoder
Grammar Variational Autoencoder, arXiv:1703.01925 
Bayesian molecular design with a chemical language model, J Comput Aided Mol Des 2017 31 379. 
Syntax-Directed Variational Autoencoder for Structured Data arXiv:1802.08786 
Population-based de novo molecule generation, using grammatical evolution, arXiv:1804.02134



Extensions, upgrades and alternatives

5/8/19 28

Graph decoding
Junction Tree Variational Autoencoder for Molecular Graph Generation, arXiv:1802.04364
GraphRNN: A Deep Generative Model for Graphs, arXiv:1802.08773
Designing Random Graph Models Using Variational Autoencoders With Applications to Chemical Design, 

arXiv:1802.05283
Towards Variational Generation of Small Graphs, ICLR 2018

Generative adversarial networks
Optimizing distributions over molecular space.An Objective-Reinforced GenerativeAdversarial Network for Inverse-
designChemistry (ORGANIC) ChemRxiv

Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models, 
arXiv:1705.10843

Adversarial Threshold Neural Computer for Molecular de Novo Design, Mol. Pharmaceutics

Optimization
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models, arXiv:1711.05772
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures PMLR 70:2536-2544, 2017



Coarse-graining MD
INVERSE DESIGN IN 3D

5/8/19 29



Coarse Grained Methods
Coarse Graining MD simulates coarse grained variables that represents slow 
collective atomistic motions derived from full atomistic simulations

Coarse Graining methods find the “effective” coarse grained potential given a 
predetermined coarse graining mapping 

S. J. Marrink et al. J. Phys. Chem. B 111, 7812 (2007).5/8/19 30



Coarse Grained Methods

Extensively studied how to find the coarse graining
potentials that reproduces equilibrium structural
correlation function from atomistic simulations
given a pre-determined CG mapping

Methods to approximate Coarse Grained Force 
Fields: Relative Entropy, Force Matching, g-YBG
(implemented in VOTCA, BOCS, etc.)

Systematic Coarse Grained force fields for 
Biomolecules: MARTIN

[1] A. J. Rzepiela et al. Phys. Chem. Chem. Phys. 13, 10437 (2011). [2] N. J. H. Dunn et al. J. Phys. Chem. B 122, 3363 (2018). [3] S. J. Marrink et al. J. Phys. Chem. B 111, 7812 (2007).

[1]

[2]

[3]
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Learning to Coarse-Grain

A learning problem

M. S. Shell, in Adv. Chem. Phys. (Wiley-Blackwell, 2016), pp. 395–441.5/8/19 32



𝐱 : atomistic coordinates
𝐕(𝐱): All-Atom Potential
𝒛 : coarse grained coordinates
𝑽𝑪𝑮(𝒛): coarse grained 
Potential

Instead of 
given 𝒙, 𝑽 𝒙 , 𝑬(𝒙) → find 𝑽𝑪𝑮 𝒛

We propose
given 𝒙, 𝑽 𝒙 → find 𝑬(𝒙) and 𝑽𝑪𝑮 𝒛 = 𝑬(𝒙)

𝑉;< 𝑧 can have an arbitrary functional form
• Classica l
𝑽𝑪𝑮 𝒛 = 𝑽𝒃𝒐𝒏𝒅𝒆𝒅 𝒛 + 𝑽𝒏𝒐𝒏C𝒃𝒐𝒏𝒅𝒆𝒅(𝒛)

• Neural (using MPNN)

Coarse Grain
Projection

𝑧 = 𝐸(𝑥){𝑥, 𝑉 𝑥 } {𝑧, 𝑉;<(𝑧)}

Coarse-graining framework

5/8/19 33



𝐷(𝑧)

Coarse Graining Auto-Encoding Framework

𝑧𝑥G 𝐸(𝑥) 𝒙𝒕I𝝉

𝑳𝑽𝑪𝑮𝑬 = | − 𝛁𝐱𝐕 ⋅ 𝒃 + 𝜵𝒛𝑽𝑪𝑮 𝑬 𝒙 |𝟐+ 𝑫𝑬 𝒙𝒕 − 𝒙𝒕 𝟐

𝑏 −𝛻U𝑉 −𝛻V𝑉;<−

• AutoEncoder automatically coarse-grains atomistic coordinates to CG coordinates in a data-driven way
• Force matching also helps to shape the learning of CG and obtain 𝑉;<(𝑧 = 𝐸(𝑥)) for CG simulations

5/8/19 34



𝑉;< 𝑧 = 𝑉WXYZ(z) + V]^_`a(z)

𝝓
𝒓𝟐

𝒓𝟏

𝑉 𝑥 = 𝑉WXYZ x +V]^_`a x +
Vfgha x + Vi]gj x + Vklm`lno(x)

CG Encoder In Training

Automatic CG for small molecules

𝝓𝒓𝟏𝒓𝟐

5/8/19 35



Decoding structures

5/8/19 36

We have sacrificed degrees of freedom, the information is gone and only an average is 
decoded.

Adding stochastic noise to the decoder is a promising avenue to sample instantaneous 
configurations.

Noe et al. Boltzmann Generators, arXiv:1812.01729



CG of liquid ethane

5/8/19 37

MPNN neural potentialClassical potential



Conclusions and 
outlook
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Blurring lines between ML and simulation

5/8/19 39

N
N

N

N N

N

Parametrization of a physics model is a 
learning problem. Even building a 
physics model may be a learning 
problem

Machine learning over matter is an issue 
of representation: how to input a system 
in a way that  captures known physics 
and chemistry

Simulations and machine learning are 
two sides of the same coin. 
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Thanks!
Wujie Wang (CG)
Wil Harris 
Daniel Schwalbe Koda
Somesh Mohapatra
James Damewood
Shi Jun Ang



Force matching

5/8/19 41

• Force matching finds 𝛻𝑉;< 𝑧
that best approximates the 
mean force 𝐹.

• We also want to optimize the 
optimization target 𝐿 : 

𝐿 = |𝐹 + 𝛻V𝑉;<(𝐸(𝑥))|#

𝑧𝑥G

−𝛻V𝑉;<

Predetermined
Coarse Graining

Mapping

−𝜵𝒛𝑽𝑪𝑮

|𝑭 + 𝜵𝒛𝑽𝑪𝑮(𝒛)|𝟐

𝑭 Mean force



Towards learned CG
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1) The coarse graining variable is a
statistical averaging of the
positions/motions from
contributing atoms

2) Perform a dimension reduction :
𝑧t = 𝐸t 𝑥 , 𝐸: ℝ'Y→ ℝ'w

3) Need to systematically redefine
coarse grained mass to conserve
kinetic energy

4) Each atom contributes to at most
one coarse grained variable, to 
ensure consistency in the 
momentum space

𝑧𝑥G

−𝛻V𝑉;<

?

−𝜵𝒛𝑽𝑪𝑮

|𝐹 + 𝛻V𝑉;<(𝐸(𝑥))|#

𝑭
𝐸(𝑥)

W. G. Noid e al. Chem. Phys. 128, 243116 (2008).

The requirements to design a physically
intuitive and rigorous encoding function:



The encoding function

5/8/19 43

In order to make a physically intuitive and
rigorous encoding function, we propose a 
neural network like encoding with the following 
constraints

1) zy = Ey x = ∑| Ey| x| [1]

2)∑| E|y = 1 and E|y ≥ 0

3)My = 𝛻 EC% �M| 𝛻 EC%

4) We use tricks in training neural network to 
enforce the learning of discrete coarse 
graining variables to ensure that each atom 
only contributes to one CG atom

𝑧𝑥G

−𝛻V𝑉;<

| F + 𝛻V𝑉;<(𝐸(𝑥))|#

𝐸(𝑥)

Learning Discrete Variable
(Gumbel Softmax) 

[1]   I: 1 … N coarse grained atom index
j: 1 … n atom index



“Coarse Graining” Forces

5/8/19 44

• We also need a function that variationally 
determines 𝐹

• 𝐹 = −b ⋅ 𝛻𝑉 𝑥 � � �� where 𝑏 is the force 
coarse graining function

• A consistent choice for 𝑏 from statistical 

mechanics: b = �� U �

�� U �⋅�� U
[1]

• Computing the mean force 𝐹 requires 
constrained dynamics. 

• However, we want a one-shot optimization 
stack without running extra MD simulations.

𝑧𝑥G 𝐸(𝑥)

−𝛻V𝑉;<

−b ⋅ 𝛻𝑉 + 𝛻V V��(E(x)) #

?

[1] E. Darve, Numerical Methods for Calculating the Potential of Mean Force.



Stochastic Force Matching

5/8/19 45

𝑧𝑥G 𝐸(𝑥)

−𝛻V𝑉;<

• Instead we compute the instantaneous 
stochastic “coarse grained” force 𝐹�Y� [1]

• 𝐹�Y� = −b ⋅ 𝛻𝑉 𝑥 (instantaneous force)

• 𝐹 = 𝐹�Y� � � �� (mean force)

𝐿�Y� = |𝐹�Y� + 𝛻V𝑉;<(𝐸(𝑥))|#

𝐿 = |𝐹 + 𝛻V𝑉;<(𝐸(𝑥))|#

𝐿�Y� = |𝐹�Y� + 𝛻V𝑉;<(𝑧)|#

𝑏 −𝛻U𝑉

[1] L. Zhang et al.  J. Chem. Phys. 149, 034101 (2018).



Stochastic Force Matching

5/8/19 46

𝑧𝑥G 𝐸(𝑥)

−𝛻V𝑉;<

• We train by propagating forward the atomistic 
trajectories in the model to obtain the energy

• The optimization is done by backpropagation
using auto-differentiation framework

𝐿�Y� = |𝐹�Y� + 𝛻V𝑉;<(𝐸(𝑥))|#

𝐿 = |𝐹 + 𝛻V𝑉;<(𝐸(𝑥))|#

𝐿�Y� = |𝐹�Y� + 𝛻V𝑉;<(𝑧)|#

𝑏 −𝛻U𝑉

[1] L. Zhang et al.  J. Chem. Phys. 149, 034101 (2018).



Supervised Coarse Graining Framework

5/8/19 47

𝑧𝑥G 𝐸(𝑥)

𝑳𝒊𝒏𝒔 = |𝑭𝒊𝒏𝒔 + 𝜵𝒛𝑽𝑪𝑮 𝑬 𝒙 |𝟐

𝑏 −𝛻U𝑉 −𝛻V𝑉;<−


