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Virtual discovery

Software is already matching (or beating) humans in
performance and speed

Driverless cars, AlphaGo, virtual assistants, speech &
image recognition and generation, ...

Increasing computing power
Faster algorithms

More data

[i

ALPHAGO P o900 P
:08: 4 b ©  LEE SEDOL
00,'98'32 o | <L . 00:00:27




Virtual discovery

Software is already matching (or beating) humans in
performance and speed

Driverless cars, AlphaGo, virtual assistants, speech &
image recognition and generation, ...

Increasing computing power
Faster algorithms

More data

What works in materials design?



Computational spectrum - virtuous cycle

There is essentially a continuum of higher parametrization and statistical learning connecting first
principles (theory-based simulations) to black-box statistical learning over experiments.

First

Principles Machine learning

Parametrization

Out-of-the-box
No/Little fitting

Extrapolates h
High-throughput v

Sometimes cheap

As good as model

As good as training data
Expensive [ proprietary data

Fast
Uncanny performance
Leverage large data

Sometimes costly



Predictive Simulation

Parametrization from experiments
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Machine Learning for Materials
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High-throughput virtual screening

Selection

Calculation

Library Generation

VI W W v e e
A\ \
AR
SRR,
"”"‘?
WU
A\ LN TN NN N

A\ N NN S S SN N -

Filter by
Properties

E

|

Machine Learning
Calculation Priority

|

&J

|

Select
Fragments

Blacklist ‘




Successful applications

Organic Light Emitting Diodes Organic Flow battery electrolytes
* High end displays, potentially lighting. * High-scale energy storage
* Lightweight, flexible, transparent, high contrast, « Emergingtechnology, promising low-cost

low power
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ML for bypassing calculations

Simulations

Are deterministic, reproducible, low-noise,
and typically faster and cheaper than
experiments.

Message passing neural networks

Large amounts of labeled data available.
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Representations that capture physics.

»

Properties from
expensive
simulation

Duvenaud et al. arXiv:1509.09292, https://github.com/HIPS/neural-fingerprint



Choosing a representation

Representation

It is common to embed the physics using features extracted from first principles
(electronegativity, atomic mass, electronic structure, atomic radius, xyz
coordinates ...)

Allows higher data efficiency, better transferability.

But they are not degrees of freedom. If they are not reversible, then the search
space is not represented.

End-to-end learning from the most basic representations, where we can "move”

Duvenaud et al. arXiv:1509.09292, https://github.com/HIPS/neural-fingerprint



Message-Passing Neural networks

Atoms represented as nodes and bonds as distance-labeled edges
Node and edge features updated iteratively based on learned neighborhood mappings

Message, update, and embedding functions are neural networks

Add messages from all neighbors Update fingerprint
My = Mo1 + Moz + Mo3 {ro, 1,12, 73}
message function update function embedding function
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Message-Passing Neural networks

oTypically achieve state of the art performance over atomic
QSPR regression problems in chemistry

o Toxicity, solubility, optical properties, band gap, shear moduli,
etc

o Energy under 1 kcal/mol and forces under 0.1 kcal/mol/A.

oNeeding 1,000-10,000 to be really effective

oCustomized for a given property
o Transferability might not be great.




Message-Passing Neural networks

All sorts of bells and whistles.

* Edge features with Gaussian basis expression of distance
Schutt et al J. Chem. Phys. 148, 241722 (2018)

* Edge updates

* k-GNN (combine with k-neighbor rather than first order)
Morris et al, arXiv:1810.02244

* Use mean/addition pooling function for very additive
properties (energies) and concatenation for non-additive
properties

*Version of periodic crystals
T Xie et al, Physical review letters 120 (14), 145301




Explore/exploit

Balancing exploration and exploitation.
=Greedy and epsilon greedy do a good job

*Thompson sampling is pretty much
equivalent

Fraction of molecules with Rate » 0.5 found
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Inverse design

Progress in predicting performance given candidate




Deep generative models

Unsupervised learning: Learning from data that has not been
labeled, classified or categorized. Find a common denominator in =4
the data. = =1

172

NI

esert/sand doér/dhtoor food court

In a generative model, we then use that commonality to generate
novel realistic synthetic samples.

oA
locker room motel museum/indoor

Nguyen, Dosovitskiy, Yosinski, Brox, Clune 2016

Karras, Aila, Laine, Lehtinen 2018




Variational Autoencoder

Artificial neural network used for learning efficient codings.
Dimensionality reduction or to learn generative models.
The latent space is continuous, derivable and low dimension.

Try to learn identity function through information bottleneck.

The latent representation of an input is not a o S
single value, but a distribution: © * ©
o Acts as a regularizer, enforcing a more crecec = cleccect
homogeneous latent representation

Discrete Structure ~ ENCODER CONEI;\IPLIJR(E;JENMU(\)TLIE(I:\IULAR DECODER Discrete Structure
o Need a priOI’ about the diStribution Of 7 SMILES Neural Network Latent Space Neural Network SMILES
(Gaussian, p=1,0=1) m z=Lpm) Poelz)

Diederik P. Kingma and Max Welling. 2015.



Chemical Variational Autoencoder

(a)
SMILES input © Trained on 250,000 drug-like molecules from ZINC database

cleccecd
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Dreaming OLEDs

Trained on HTVS library and patented OLED
No bias, just generation
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Non-linear avigation

The space is very much not C
linear. Most molecules are in (©) € Closer Molecules sampled in a neighborhood of Ibuprofen Farther =
an annulus far from the ~ - PUSCNE 2
mean. X Bethn w(\”ol AR . %@‘
2.58 5.75 7.49 11.02 13.11 15.46 ‘19.96
—<__©—-?_“ oL M A J:}g Hﬁ\ J\/Q)/ |_/~7SV’L,D\L<
0 3.07 6.08 9.25 11.07 14.07 15.77 : 20.94
Ibuprofen 'K
2Oy Aoy ot M0 oy ACH m}&
2.74 5.89 8.71 12.29 14.43 17.16 II 19.60
Average distance between ZINC molecules Iaten’E space(19.66)
(d)
SLERP (Spherical Start _End
interpolation) allows taking )_;2})_\' \—\_(Qp— Lﬁb 3_(_\-6 % cf‘:FO T
much more sensible steps > ~~ )‘\\ ¢ ( \‘C\

Acebutolol

Propafenone




Semisupervised Molecular VAE

(a) The latent representation now encodes

T O mapping to one or more properties.
ENCODER
Neural Network b

Property
()

CONTINUOUS

MOLECULAR ¢O
REPRESENTATION 5 f(z)
(Latent Space) w

(FO,-;

PROPERTY
PREDICTION
DECODER | :
Neural Network ! . Mol 3
Most Probable Decoding
SMILES output © argmax p(*z)

Gomez-Bombarelli et al. ACS Central Science 2018, 4 (2), 268-276




Semisupervised performance

VAE only VAE with.pr_operty
prediction
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afford similar performance to neural
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Optimization

Leverage gradients to inform optimization
Leverage smooth, continuous QSPR
Mix with optimizer of choice

PCA of latent space Objective
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Chemical space is different

Generative models of images rely of human’s prowess in pattern-recognition.

This works .. ... a bit like this works

Radford, Metz, Chintala arXiv:1511.06434v2 201

Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Jiangang Liu, Jun Li, Lu Feng,

Ling Li, Jie Tian, Kang Lee



Extensions, upgrades and alternatives

Character-by-character RNN

Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks, ACS Cent.
Sci., 2018, 4 (1), pp 120131

SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules, arXiv:1703.07076

[cs.LG]
Molecular de-novo design through deep reinforcement learning, Journal of Cheminformatics 2017 9:48

Generative Recurrent Networks for De Novo Drug Design, Molecular informatics 2018 37, - Whole issue!

Better decoder
Grammar Variational Autoencoder, arXiv:1703.01925

Bayesian molecular design with a chemical language model, J Comput Aided Mol Des 2017 31 379.
Syntax-Directed Variational Autoencoder for Structured Data arXiv:1802.08786

Population-based de novo molecule generation, using grammatical evolution, arXiv:1804.02134




Extensions, upgrades and alternatives

Generative adversarial networks

Optimizing distributions over molecular space.An Objective-Reinforced GenerativeAdversarial Network for Inverse-
designChemistry (ORGANIC) ChemRxiv

Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models,
arXiv:1705.10843

Adversarial Threshold Neural Computer for Molecular de Novo Design, Mol. Pharmaceutics

Graph decoding
Junction Tree Variational Autoencoder for Molecular Graph Generation, arXiv:1802.04364
GraphRNN: A Deep Generative Model for Graphs, arXiv:1802.08773

Designing Random Graph Models Using Variational Autoencoders With Applications to Chemical Design,
arXiv:1802.05283

Towards Variational Generation of Small Graphs, ICLR 2018

Optimization

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models, arXiv:1711.05772
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures PMLR 70:2536-2544, 2017




Coarse-graining MD

INVERSE DESIGN IN 3D




Coarse Grained Methods

Coarse Graining MD simulates coarse grained variables that represents slow
collective atomistic motions derived from full atomistic simulations

Coarse Graining methods find the “effective” coarse grained potential given a
predetermined coarse graining mapping

S. J. Marrink et al. J. Phys. Chem. 83ﬂ1, 7812 (2007).



Coarse Grained Methods

U (kJ mol™)

Extensively studied how to find the coarse graining
potentials that reproduces equilibrium structural )
correlation function from atomistic simulations p o e T e N Y]
given a pre-determined CG mapping

Methods to approximate Coarse Grained Force
Fields: Relative Entropy, Force Matching, g-YBG
(implemented in VOTCA, BOCS, etc.)

Systematic Coarse Grained force fields for
Biomolecules: MARTIN

[1] A. J. Rzepiela et al. Phys. Chem. Chem. Phys. 13, 10437 (2011). [2] N. J. H. Dunn et al. J. Phys. Chem. B 122, 3363 (2018). [3] S. J. Marrink et al. J. Phys. Chem. B 111, 7812 (2007).




Learning to Coarse-Grain

coarse-grained
hydrogens

coarse-grained
functional groups

coarse-grained
amino acid residues

A learning problem

M.S. Shell, in Adv. Chem. Phys. (Wiley-Blackwell, 2016), pp. 395-441.



Coarse-graining framework

X: atomistic coordinates
V(x):  All-Atom Potential
z: coarse grained coordinates

Vce(2): coarse grained
‘ Potential

Coarse Grain
Projection

B

{x,V(x)} z = E(x) {z,Vce(2)}
Instead of Vee(2) can have an arbitrary functional form
: : * C(lassical
given x, V(x), E(x) = find V¢¢(2)
We propose Vee(2) = Viondeda(2) + Vaon-bondea(2)

given x, V(x) — find E(x) and Vs (z = E(x)) * Neural (using MPNN)




Coarse Graining Auto-Encoding Framework
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Lycge = | —VV-D + VzVCG(E(x))|2+ ID E (x;) — x|

* AutoEncoder automatically coarse-grains atomistic coordinates to CG coordinates in a data-driven way
* Force matching also helps to shape the learning of CG and obtain V.;(z = E(x)) for CG simulations

5/8/19 34




Automatic CG for small molecules

CG Encoder In Training

V(%) = Vpona () + Vangle x) + 1% —
c6(2) = Vpona(2) + Vangle(@)
Vdihe (X) + Vpalir (X) + Vcoulomb (X) o e
8 \ 8 1or ¢ 7 cG
2 gk 4 = = = gtomistic
6 6F
\

6F

4 4t
4+

2r 2
2k

A
0 L 1 oF oF
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Decoding structures

original molecule coarse grained molecule decoded molecule

We have sacrificed degrees of freedom, the information is gone and only an average is
decoded.

Adding stochastic noise to the decoder is a promising avenue to sample instantaneous
configurations.

Noe et al. Boltzmann Generators, arXiv:1812.01729




CG of liquid ethane

Classical potential MPNN neural potential
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Conclusions and
outlook




Blurring lines between ML and simulation

Parametrization of a physics model is a
learning problem. Even building a
physics model may be a learning
problem

Machine learning over matter is an issue
of representation: how to input a system
in a way that captures known physics
and chemistry

Simulations and machine learning are
two sides of the same coin.
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Force matching

F et IR 8
ean force : z" (G * Force matching finds V¢ (2)

that best approximates the
mean force F.

Predetermined

Coarse Graining
Mapping
* We also want to optimize the

optimization target L :

L=|F + UVee(EQ)|?

|F 4+ V,V¢(2)|?




Towards learned CG

The requirements to design a physically
intuitive and rigorous encoding function:

_VZVCG 1) The coarse graining variable is a
statistical averaging of the
positions/motions from
contributing atoms

2) Perform a dimension reduction :
z; = E;(x),E: R3" > R3V

3) Need to systematically redefine
coarse grained mass to conserve
kinetic energy

4) Each atom contributes to at most
one coarse grained variable, to
ensure consistency in the

IF + UV (EQO)|2 momentum space

W. G. Noid e al. Chem. Phys. 128, 243116 (2008).




The encoding function

In order to make a physically intuitive and
rigorous encoding function, we propose a

SRRy,  enmmmmmmmEE, neural network like encoding with the following
. ‘-: E(x) g z constraints

. . - Dz = E{(x) = X Eyj x5 [a]

: E: E 3)M] = (V E_l)TM]‘ Vv E_1

% ’: Y ': 4) We use tricks in training neural network to

AT ER IR ERRR

+QO0Q):

Learning Discrete Variable

(Gumbel Softmax) 2
[1] I: 1 ... Ncoarse grained atom index | F+ VaVeg (E(x))]

j: 1 .. n atomindex

QqpEeEeEEEEEEB

enforce the learning of discrete coarse
graining variables to ensure that each atom
only contributes to one CG atom




"Coarse Graining” Forces

* We also need a function that variationally

sEEEmEEEE, determines F
L

o N ENENEENEENEERRER)y

Xt

* F=(=b- VV(x))g(x)=z Where b is the

* A consistent choice for b from statistical

VE(x) T
PE TG

mechanics: b =

‘Illlllllllllll..
.IIIIIIIIIIIIII"

* Computing the mean force F requires
constrained dynamics.

*

..IIIIIIIII ..IIIIIIIII

* However, we want a one-shot optimization
stack without running extra MD simulations.

[{(=b - VV) + ¥, Ve (E(x))|?

5/8/19 [1] E. Darve, Numerical Methods for Calculating the Potential of Mean Force. A



Stochastic Force Matching

* Instead we compute the instantaneous
stochastic “coarse grained” force Fj;5 [1]

o N ENENEENEENEERRER)y

“IIIIIIIII.
X¢ a E(x)

2 * F,.=—b- VV(x) (instantaneous force)

* F = (Fins)ex)=z (mean force)

IIIIIIIII"

L=|F + UVee(E@)|?

¥

Lins = |Fins + VZVCG(E(x))lz

8

'.IIIIIIIII’

e

VY

Lins = |Fins + VZVCG(Z)lz

'.IIIIIIIII

[1] L.Zhangetal. J. Chem. Phys. 149, 034101 (2018).



Stochastic Force Matching

* We train by propagating forward the atomistic
trajectories in the model to obtain the energy

o N ENENEENEENEERRER)y

“IIIIIIIII.
X¢ a E(x)

Z * The optimization is done by backpropagation
using auto-differentiation framework

IIIIIIIII"

L=|F + UVee(E@)|?

¥

Lins = |Fins + VZVCG(E(x))lz

8

[
|
v

'.IIIIIIIII’

o

VY

Lins = |Fins + V.Vee (Z)lz

'.IIIIIIIII

5/8/19 [1] L.Zhangetal. J. Chem. Phys. 149, 034101 (2018).



Supervised Coarse Graining Framework

Lins = |Fins + VZVCG(E(x))lz




