

Machine learning molecular kinetics and coarse-grained molecular dynamics forcefields

ML4MS: Young Researcher's Workshop on Machine Learning for Materials Science

Simon Olsson FU Berlin

Aalto University, Helsinki, Finland 6.-10. May 2018 @smnlssn <u>simon.olsson@fu-berlin.de</u>

The role of conformational change in biology: a mechanistic view

Protein-protein and protein-ligand binding

<u>Quantities of interest:</u>

 $\Delta G_{\text{bind}}, k_{\text{on}} \text{ and } k_{\text{off}}$

With Chakrabarty ... Weikl, Noé and Griesinger

The role of conformational change in biology: a mechanistic view

Protein-protein and protein-ligand binding

Quantities of interest:

 $\Delta G_{\text{bind}}, k_{\text{on}} \text{ and } k_{\text{off}}$

With Chakrabarty ... Weikl, Noé and Griesinger

Allosteric regulation — Cryptic pockets

<u>Quantities of interest:</u> $\Delta G_{\text{pocket}}, \tau_{\text{open}} \text{ and } k_{\text{open}}$

With Raich

Sampling $\{x_0, x_t, ..., x_T\}$ U(x)

Model of physical interactions

Model of physical interactions

Important conformational states are often inter-connected by rare events

 $\longrightarrow \{x_0, x_t, \dots, x_T\}$ are all from the same meta-stable state

Model of physical interactions

Important conformational states are often inter-connected by rare events

 $\longrightarrow \{x_0, x_t, \dots, x_T\}$ are all from the same meta-stable state

Naive solution: increase T

Model of physical interactions

Important conformational states are often inter-connected by rare events

 $\longrightarrow \{x_0, x_t, \dots, x_T\}$ are all from the same meta-stable state

Naive solution: increase $T \longrightarrow Expensive and slow!$

Model of physical interactions

Important conformational states are often inter-connected by rare events

 $\longrightarrow \{x_0, x_t, \dots, x_T\}$ are all from the same meta-stable state

Naive solution: increase $T \longrightarrow Expensive and slow!$

Adaptive strategy $U(x_a), U(x_b)...U(x_z)$

Multiple initial conditions simulated in parallel

Model of physical interactions

Important conformational states are often inter-connected by rare events

 $\rightarrow \{x_0, x_t, \dots, x_T\}$ are all from the same meta-stable state

Naive solution: increase $T \longrightarrow Expensive and slow!$

 $\sigma_a = \{0,1\}$ #S = 2¹² = 4096

 $\sigma_a = \{0,1\}$ #S = 2¹² = 4096 $\sigma_a = \{0,1,2\}$ #S = 3¹² = 531441

$$\begin{split} \sigma_a &= \{0,1\} & \#S = 2^{12} = 4096 \\ \sigma_a &= \{0,1,2\} & \#S = 3^{12} = 531441 \\ \sigma_a &= \{0,1,2,3\} & \#S = 4^{12} = 16777216 \\ \sigma_a &= \{0,\dots,N\} & \#S = N^{12} \end{split}$$

Dynamic Graphical models: Going local to scale globally

Dynamic Graphical models: Going local to scale globally

Consistent predictions for small molecular systems

Consistent predictions for small molecular systems

Predicting beyond the observed domain

We consider two fast folding proteins which was previously studied by Lindorff-Larsen et al.

Predicting beyond the observed domain

We consider two fast folding proteins which was previously studied by Lindorff-Larsen et al.

Predicting beyond the observed domain

We consider two fast folding proteins which was previously studied by Lindorff-Larsen et al.

Olsson & Noé (bioRxiv:467050)

Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

Simulating large molecular systems is challenging

- Atomistic molecular simulations have seen many successes including
 - Folding of small protein domains
 - Identifying transient structural states in proteins

- However, computational effort grows rapidly with the number of atoms:
 - Shorter simulations => less confident predictions about slow time-scale events

Non-atomistic (coarse-grained) models may help us close the gap!

Coarse-graining

Coarse-graining with thermodynamic consistency

• We want to build a coarse-grained free energy model which matches the fine-grained model as closely as possible.

 $p(\mathbf{r}) = \exp(-u(\mathbf{r})/k_bT)$ Boltzmann weights

Coarse-graining with thermodynamic consistency

• We want to build a coarse-grained free energy model which matches the fine-grained model as closely as possible.

 $p(\mathbf{r}) = \exp(-u(\mathbf{r})/k_bT)$

 $p(\mathbf{R}) = \frac{\int p(\mathbf{r})\delta(\mathbf{R} - \xi(\mathbf{r}))d\mathbf{r}}{\int p(\mathbf{r})d\mathbf{r}}$

Boltzmann weights

Coarse-grained distribution

uniquely defined, albeit intractable integral! — origin of pesky multi-body terms

Coarse-graining with thermodynamic consistency

• We want to build a coarse-grained free energy model which matches the fine-grained model as closely as possible.

 $p(\mathbf{r}) = \exp(-u(\mathbf{r})/k_b T)$

 $p(\mathbf{R}) = \frac{\int p(\mathbf{r})\delta(\mathbf{R} - \xi(\mathbf{r}))d\mathbf{r}}{\int p(\mathbf{r})d\mathbf{r}}$

 $U(\mathbf{R}) = -k_B T \log p(\mathbf{R}) + C$

Boltzmann weights

Coarse-grained distribution

CG free energy potential

vuniquely defined, albeit intractable integral! — origin of pesky multi-body terms
Can we approximate this Free energy potential with a neural network?
If so how?

Estimating CG Free energy potential model — a ML problem

Matching instantaneous forces between CG and atomistic models

CGNet: A Deep neural network approach

• We train several models to approximate $U_{\theta}(\mathbf{R})$

CG Free energy Net

Regularized CG Free energy Net

Reference mode

CGNet: A Deep neural network approach - application to Chignolin

- Fast-folding micro protein
- All-atom simulation
 - Forces and coordinates stored
- Regularized CGNet captures three free energy minima well. Samples similar structures
- Reference model fails to capture free energy minima.

CGNet: A Deep neural network approach - outstanding problems

- Transferability
 - CGnet currently only predicts properties of molecule for which training data is available.
 - Use parameter-sharing
 - Generate data-set of multiple molecular systems for training.
- Computational overhead associated with current CGnet architecture may become substantial.
 - Alternative network architectures <=> parameter sharing.

Acknowledgements

FU Berlin

Rice University

Universitat Pompeu Fabra

<u>Save the date:</u> MolKin2019 Molecular Kinetics

Sampling, Design and Machine Learning

June 19-21, 2019, Berlin Germany

Only a few spots left!

Dahlem Research School

Center for Junior Researchers

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

