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Molecular simulations as a tool to study conformational change

Samplin
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Model of
physical interactions

Important conformational states are often inter-connected by rare events
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Adaptive strategy
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Kinetic models
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Multiple initial conditions

simulated in parallel
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We consider two fast folding proteins which was previously studied by Lindorff-Larsen et al.
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Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

Wang L, Olsson S, Wehmeyer C, Perez A, Charron N, De Fabritiis G, Noé F, Clementi C. ACS Cent Sci (2019).



Simulating large molecular systems is challenging

e Atomistic molecular simulations have seen many successes including
e Folding of small protein domains
¢ |dentifying transient structural states in proteins

33 9 &F

Chignolin 106 ys  Trp-cage 208 us BBA 325 us  Villin 125 us
cin025 1.0A 06ps 2JOF 1.4A 14 pus 1FME 16A 18us 2F4K 1.3A 28ps
(

WW domain 1137 ys  NTL9 2936 us  BBL 429 ys  ProteinB 104 ps
2F21 12A 21ps 2HBA 0.5A 29pus 2WXC 48A 29us 1PRB 3.3A 39us

Homeodomain 327 ys Protein G 1154 ys  a3D 707 us A-reprssor 643 us
2P6J 3.6 A 3.1pus IMIO 1.2A 65us  2A3D 3.1A 27us 1LMB 1.8 A 49 us

e However, computational effort grows rapidly with the number of atoms:
e Shorter simulations => less confident predictions about slow time-scale events

Non-atomistic (coarse-grained) models may help us close the gap!

Lindorff-Larsen et al. Science 2011 Olsson et al Structure 2016



Coarse-graining

Fine grained Embedding function Coarse grained
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Coarse-graining with thermodynamic consistency

* \We want to build a coarse-grained free energy model which matches the
fine-grained model as closely as possible.

p(r) = exp(—u(r)/kyT)  Boltzmann weights

[ p(r)d(R —&(r))dr

P(R) = [ p(r)dr

Coarse-grained distribution

U(R) = —kgT log p(R) 1L CG free energy potential

uniquely defined, albeit intractable integrall — origin of pesky multi-body terms

Can we approximate this Free energy potential with a neural network?

If so how?



Estimating CG Free energy potential model — a ML problem

* Matching instantaneous forces between CG and atomistic models

77(0) = (IIEF(T)) + VUp(E@)) )

Atomistic forces projected
onto CG particles

Predicted average CG particle
force on mapped configuration

Compare
s(F(r)) =&(— Vu(r)) < > —VUy(5(r))
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CGNet: A Deep neural network approach

* We train several models to approximate U (R)
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CGNet: A Deep neural network approach - application to Chignolin

e Fast-folding micro protein R Thie Spinemode e
e All-atom simulation 4 T p ':
e Forces and coordinates 5 ¥ |
stored )
* Regularized CGNet & )@ 8
captures three free energy . \ Esp:d
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Wang, Olsson et al . ACS Cent. Sci 2019



CGNet: A Deep neural network approach - outstanding problems

e Transferability
* CGnet currently only predicts properties of molecule for which
training data is available.
* Use parameter-sharing
e Generate data-set of multiple molecular systems for
training.

e Computational overhead associated with current CGnet

architecture may become substantial.
¢ Alternative network architectures <=> parameter sharing.

Wang, Olsson et al . ACS Cent. Sci 2019
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