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Sampling

Important conformational states are often inter-connected by rare events
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{x0, xt, …, xT}
Model of 

physical interactions

{x0, xt, …, xT} are all from the same meta-stable state

Naive solution: increase T Expensive and slow!

Adaptive strategy
Kinetic models

MSM U(xa), U(xb)…U(xz)
Multiple initial conditions 

simulated in parallel
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Dynamic Graphical models: Going local to scale globally

Figure 1: Illustration of molecular representations in Markov state models (MSM) and dy-
namic graphical models (DGM). A: cartoon representation of protein conformational states
found along a trajectory. B: MSM with Markov states, Si, and transition probabilities
between states Si and Sj, pij. The number of different Markov states, Si, may grow expo-
nentially with the number of features, and only feature combinations that have been observed
can be encoded in Markov states. C: DGMs represents the current state of the system via
the states of its sub-systems, �i that are coupled by parameters Jij. The DGM can still
encode exponentially many states, but the number of model parameters grows much slower.
DGMs can predict system states that have not yet been observed.

6
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Predicting beyond the observed domain

Olsson & Noé (bioRxiv:467050)

Figure 4: Prediction of macroscopic stationary and dynamic properties of fast folding pro-
teins Villin and BBA with DGMs. Molecular renders of meta-stable configurations identified
by HMMs of villin (A) and BBA (E), using a ribbon representation. Color/meta-stable state
relationship: Blue/1, Orange/2, Green/3, Red/4 Purple/5. B/F) Meta-stable state distribu-
tions sampled by DGMs estimated leaving data from one of four meta-stable state out during
estimation and using the full data set (hatched). Reference distribution estimated using a
hidden Markov model (HMM) estimated with the full MD data-set (orange). C/G) Bar plots
of fraction incorrectly assigned sub-systems (✏)of atomistic models from sub-system encoded
trajectories sampled by DGMs, errorbars represent a 68% confidence interval . D) Normal-
ized auto-correlation function of the rotameric state of the � torsion of Lys 71 in Villin as
sampled by the DGM models and in the simulation data. H) Normalized auto-correlation
function of the rotameric state of the � torsion of Glu 17 in BBA as sampled by the DGM
models and in the simulation data.
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We consider two fast folding proteins which was previously studied by Lindorff-Larsen et al.

Villin  — 5 Meta-stable states BBA  — 4 Meta-stable states 
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Machine Learning of Coarse-Grained Molecular Dynamics Force Fields 

Wang L, Olsson S, Wehmeyer C, Perez A, Charron N, De Fabritiis G, Noé F, Clementi C. ACS Cent Sci (2019).  



Simulating large molecular systems is challenging

• Atomistic molecular simulations have seen many successes including 
• Folding of small protein domains 
• Identifying transient structural states in proteins 

• However, computational effort grows rapidly with the number of atoms: 
• Shorter simulations => less confident predictions about slow time-scale events

Lindorff-Larsen et al. Science 2011

Non-atomistic (coarse-grained) models may help us close the gap!

centers (Figures 2A and 2B). Subsequently, we quantified tem-
perature-dependent population changes in the cluster probabil-
ities defined above (see Experimental Procedures, Figure 2E).
The cluster probability reflects the chance of being in a certain
segment of configurational space. We identified two clusters
with a significant fraction of the probability mass at 278 K, a
native cluster (>90%) and a near-native cluster (>5%). Both of

these clusters have the well-known three-strand anti-parallel
b sheet native fold of the WW domain. However, there are three
important differences. A ring flip in Trp 11 allows for a topological
rearrangement of the N and C termini in the near-native cluster
(Figures 2D and S6). This difference is consistently correlated
with a transition in the preferential backbone dihedral angles in
the binding loop (Figures 2C and 3). Finally, the two clusters

A B

C

D

E

Figure 2. Summary of Generated Ensembles at 278 K and 303 K
Free-energy landscapes at (A) 278 K and (B) 303 K and cluster populations as a function of temperature in the REs (E). Cluster centroids are shown with upward

pointing red triangles for clusters that have a higher population in the RE compared with the CE, and a downward pointing triangle for the clusters having a lower

population. The native and near-native clusters are red triangles annotated with N and NN, respectively. The unfolded clusters are black triangles annotated with

U. Renderings of conformational changes in loop 1 (residues 17–20) (C) and the topological reorientation of the N and C termini (D) are shown for ten random

conformations from each cluster. The native cluster is purple and the near-native cluster is teal.

1466 Structure 24, 1464–1475, September 6, 2016

Olsson et al Structure 2016
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Coarse-graining with thermodynamic consistency

Boltzmann weights

• We want to build a coarse-grained free energy model which matches the 
fine-grained model as closely as possible.
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Coarse-graining with thermodynamic consistency

Boltzmann weights

Coarse-grained distribution

CG free energy potential

• We want to build a coarse-grained free energy model which matches the 
fine-grained model as closely as possible.

uniquely defined, albeit intractable integral! — origin of pesky multi-body terms

Can we approximate this Free energy potential with a neural network?
If so how?



Estimating CG Free energy potential model — a ML problem

• Matching instantaneous forces between CG and atomistic models

χ2(θ) = ⟨∥ξ(F(r)) + ∇Uθ(ξ(r))∥2⟩

Atomistic forces projected 

onto CG particles

Predicted average CG particle 

force on mapped configuration

u(r) ξ(r)

ξ(F(r)) = ξ( − ∇u(r)) −∇Uθ(ξ(r))

Uθ(R)

Compare



CGNet: A Deep neural network approach

• We train several models to approximate Uθ(R)

Wang, Olsson et al . ACS Cent. Sci 2019

CG Free energy Net

Regularized CG Free energy Net

Reference mode



CGNet: A Deep neural network approach - application to Chignolin

• Fast-folding micro protein 
• All-atom simulation 

• Forces and coordinates 
stored 

• Regularized CGNet 
captures three free energy 
minima well. Samples 
similar structures 

• Reference model fails to 
capture free energy 
minima.

Wang, Olsson et al . ACS Cent. Sci 2019



CGNet: A Deep neural network approach - outstanding problems

• Transferability 
• CGnet currently only predicts properties of molecule for which 

training data is available. 
• Use parameter-sharing 
• Generate data-set of multiple molecular systems for 

training. 

• Computational overhead associated with current CGnet 
architecture may become substantial. 
• Alternative network architectures <=> parameter sharing. 

Wang, Olsson et al . ACS Cent. Sci 2019
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