Automated Structure Discovery in Atomic Force Microscopy

Benjamin Alldritt¹, Prokop Hapala¹, Fedor Urtev¹, <u>Niko Oinonen¹</u>, Ondrej Krejčí¹, Filippo Federici Canova^{1,3}, Fabian Schultz⁴, Juho Kannala², Peter Liljeroth¹, Adam Foster^{1,5,6}

ML4MS 2019 09.05.2019

¹Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland ²Department of Computer Science, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland ³Nanolayers Research Computing Ltd, London, UK ⁴BM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland ⁵Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128, Germany ⁶WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

What is this about?

What is this?

Gross et al. (2009)

Advances in deep learning

Artificial neural network

- Computer vision
- Language processing
- Playing Games
- ..

Machine translation

Image recognition

AFM + Deep Learning = Win?

Spatial structure, Chemical properties, Which molecule?

Atomic force microscopy (AFM)

https://commons.wikimedia.org/wiki/File:A FM_tip_with_CO-functionalization.png

Bare metallic tip:

- FM-AFM: drive cantilever at resonance, measure frequency shift Δ f
 - Tip functionalization: CO, Cl, Xe, etc.

CO-functionalized tip:

Gross et al. (2009)

Probe particle model

- Lennard-Jones + electrostatics + spring force
- Efficient GPU implementation
 - \rightarrow ~50 simulations/second

Molecular

Probe particle

Probe particle trajectories $\Delta \vec{r}$

 $\Delta f(\vec{r})$

Model details

Layer type	Output dimension	Kernel size	Stride	Parameters	Zero padding (x,y,z)
Input	$128 \times 128 \times 10 \times 1$	-	-	-	-
3D conv	$128 \times 128 \times 10 \times 4$	$3 \times 3 \times 3$	(1, 1, 1)	112	(1, 1, 1)
Avg pool	$64 \times 64 \times 5 \times 4$	$2 \times 2 \times 2$	(2, 2, 2)	-	-
3D conv	$64 \times 64 \times 5 \times 8$	$3 \times 3 \times 3$	(1, 1, 1)	872	(1, 1, 1)
Avg pool	$32 \times 32 \times 2 \times 8$	$2 \times 2 \times 2$	(2, 2, 2)	-	-
3D conv	$32 \times 32 \times 2 \times 16$	$3 \times 3 \times 3$	(1, 1, 1)	3472	(1, 1, 1)
Avg pool	$16 \times 16 \times 2 \times 16$	$2 \times 2 \times 1$	(2, 2, 1)	-	-
Parallel 2D convs	$16 \times 16 \times 128$	3×3	(1, 1)	5888	(1,1)
2D conv	$16 \times 16 \times 64$	1×1	(1, 1)	8256	(1,1)
2D conv	$16 \times 16 \times 64$	3×3	(1, 1)	36928	(1,1)
2D conv	$16 \times 16 \times 64$	3×3	(1, 1)	36928	(1,1)
NN-upsample	$32 \times 32 \times 64$	-	-	-	-
2D conv	$32 \times 32 \times 16$	3×3	(1, 1)	9232	(1,1)
2D conv	$32 \times 32 \times 16$	3×3	(1, 1)	2320	(1,1)
NN-upsample	$64 \times 64 \times 16$	-	-	-	-
2D conv	$64 \times 64 \times 16$	3×3	(1, 1)	2320	(1,1)
2D conv	$64 \times 64 \times 16$	3×3	(1, 1)	2320	(1,1)
NN-upsample	$128\times128\times16$	-	-	-	-
2D conv	$128\times128\times16$	3×3	(1, 1)	2320	(1,1)
2D conv	$128\times128\times16$	3×3	(1, 1)	2320	(1,1)
2D conv	$128 \times 128 \times 1$	3×3	(1, 1)	145	(1,1)

Model training

Keras + Tensorflow

- · Mean squared loss $\frac{1}{N_{pixels}}\sum_{i=1}^{N_{pixels}}(f(x)_i-y_i)^2$
- Trained on 5000-6000 molecules with 20 rotations each $\rightarrow \sim 100000$ training samples
- Regularization: Random noise, Cutouts, Random pixel shift, Scanning height randomization

Results

Positional prediction

Simulations

Dibenzo[a,h]-thianthrene

Simulated Δf

Few more examples

Experimental

Electrostatics prediction

Electrostatics prediction

Multiple inputs Hapala et al. (2016) а b 3D Conv Avg Pool 2D Conv Xe-tip CO-tip NN upsample ES map CO Height map Xe

Multi-input electrostatics

Future directions

Direct prediction of coordinates

(9.80, 6.02, -0.61), (9.98, 7.08, -0.58), (9.03, 8.11, -0.26), (11.16, 7.70, -0.84),

Predicting elements

. . .

In conclusion

- ML model for predicting properties from AFM images
- Good performance on simulated images
- · Experimental images remain challenging