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Motivation
● Lattice Models used to study strongly correlated 

electrons
– Systems with F electrons
– Mott transition

● Number of configurations increases exponentially with 
the number of particles & sites
– Exact Diagonalization unfeasible for large systems
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Goal
● Predict finite temperature 

properties 
– By training on small systems 

● Method is general for any 
lattice model

● As an example we use the 
1-D Spinless Hubbard 
Model

Small
Cheap

Systems

Large
Expensive
Systems

Train Predict
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Representation
● HK Theorem – Lattice DFT
● Write F as a sum of site 

centred local functions
● Size of local subset is a 

hyperparameter 
● We use neural networks – 

universal approximator

Subset of 3
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Generating the Dataset
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1. Given a set 
of L onsite 
energies

2. Construct 
Hamiltonian

4. Compute 
occupations

5. Compute 
universal 
function

● Repeat process to build up dataset

● Use NNs to map {ni
GS} to f

● Using site centred local functions 
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How local is the energy?

L=6, V=1, subset of 3
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Larger Predictions

The Error of f:
● Decreases by 

training on larger 
lattices

● Independent of V 
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Starting from the Onsite Energies
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Minimize Energy using 
Gradient Descent

{n
i
GS =N/L}

 

Trained on smaller 
number of sites

Initial Density



08/05/19

Minimization - L10 to L14
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Finte Temperature

{ ε
i 
} H

3. Diagonalize

 {n
i
GS }

 

 {Eα} 
 

1. Given a set 
of onsite 
energies

2. Construct 
Hamiltonian 4. Compute 

occupations
(GS occupations 
contain all 
information)

5. Compute 
Spectrum

Then we use ML to map:  {n
i
GS,T } to o(T) 

6. Compute 
Finite 
Temperature 
Properties, 
e.g. entropy, 
energy, ...
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Workflow
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3. Find density 
that minimizes 
the energy

4. Use trained 
thermodynamic 
functions

o(T)
 

Neural Network 1: {n
i
GS} -> f Neural Network 2: {n

i
GS, T} -> o(T) 

1. Train NNs on 
data with 
computable 
number of sites

2. Onsite 
Energies with 
larger lattice 
size
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Thermodynamics - L10 to L14
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Conclusions & Future Work
● Introduced local site representation

– Independent of number of sites 
– Method is generalizable to other lattice models

● Using Spinless Extended Hubbard Model
– Compute density from onsite energies
– Framework for predicting finite temperature quantities from onsite energies

●

● Extend to 2 & 3 dimensions
● Allow hopping to vary – new geometries
● Incorporate Spin
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Machine learning density functional theory for the Hubbard model
James Nelson, Rajarshi Tiwari, and Stefano Sanvito

Phys. Rev. B 99, 075132

New work: Arxiv Preprint Forthcoming

Thanks for your attention!

@jim_nelson_ai
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Hamiltonian Matrix
● For a L site lattice with N electrons
● Introduce a basis set            and expand the 

wavefunction:
● Using the Schrodiinger equation we get an 

eigenvalue problem: 
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Density vs Onsites

Gives the same 
value for bth 
systems

Is different – since 
the densities are 
different
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