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Big picture of statistical inference

GIVEN:

I Data = x = (x1, . . . , xn)

I Model which describes data, px |θ(x |θ)
indexed by parameters = θ = (θ1, . . . , θd)

I Prior probability density for θ, pθ

WANTED:
I Some probabilistic statement about θ and model

I point estimation
I confidence/credible intervals
I hypothesis testing
I prediction
I model selection
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Two types of models

I Statistical model

px |θ(xi |θ) =
1√

2πσ2
exp

(
− 1

2σ2
(xi − µ)2

)
, θ = (µ, σ)

I Generative model
→ given θ = (µ, σ)
→zi ∼ N (0, 1)
→xi = µ+ σzi
→xi ∼ px |θ(xi |θ)

I In some settings easier to specify a generative model

I Sometimes there is no 1:1 correspondence bwn statistical and
generative model



Examples of generative models

Model M(θ): = px |θ(x |θ)→ Simulate Data: xsim

I Fluid dynamics:
Angelos Cronis et. al. 2012

I Bio simulation:
Dutta, Bastien, Mira et. al. 2018

I Simulation of galaxy:
Gauss center for supercomputing, 2019



Other examples

I Evolutionary biology:
Simulating species evolution

I Ecology:
Simulating species migration over time

I Neuroscience:
Simulating neural circuits

I Health science:
Simulating the spread of an infectious disease

I Meteorology :
Simulating weather prediction
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Likelihood-based statistical inference

I Likelihood function:

L(θ) ∝ px |θ(x|θ)

I Plays a central role in statistical inference
I Maximum likelihood estimation:

θ̂MLE = argmaxθL(θ)

I Bayesian inference:

pθ|x(θ|x) ∝ L(θ)pθ(θ)

I Likelihood function not available for generative models



We do inference for LHD free generative models

Successful collaborations

I Network Science
→ To detect source and spreading of fake news / epidemics

I Health
→ To personalize clinical tests of cardiovascular diseases

I Dynamic Queuing Network
→ To better manage passengers in airports

I Physics → To calibrate Force-Fields (+ UQ) to reproduce
properties measured by simulations or experiments

On-going collaborations

I Hydrology

I Modeling of solar dynamo

I ....



Details of the setting
I We consider MD simulations, which sample the phase space

by integrating the deterministic Newtons equations of motion
giving access to dynamic and thermodynamic properties for
which LHD is not available analytically (unlike forces and
energies)

I Uncertainty: Model, Parameters, Computational (finite
number of molecules and simulation time), Measurement

I The accuracy of the underlying molecular mechanics
Force-Field used to solve the equations of motion defines the
approximation in the phase space exploration

I Lennard-Jones Force-Field parameters of helium and
(rigid non-polarizable) TIP4P Force-Field of water

I Simulated (LAMMPS, GROMACS) and experimental data
collected using Neutron and X-ray diffraction



Final results:

I strong correlation pattern between the Force-Field parameters

I posterior distribution allows uncertainty quantification

I calibrate + predict + select Force-Field formalisms
(TIP3P, TIP4P, TIP5P)



Approximate Bayesian Computation (ABC) references
I ABC in population genetics, MA Beaumont, W Zhang, DJ

Balding - Genetics, 2002

I Comparative evaluation of a new effective population size
estimator based on approximate Bayesian computation DA
Tallmon, G Luikart, MA Beaumont - Genetics, 2004

I Inferring population history with DIY ABC: a user-friendly
approach to ABC, JM Cornuet, F Santos, MA Beaumont, CP
Robert, JM Marin, . . . - Bioinformatics, 2008

I COMPUTER PROGRAMS: onesamp: a program to estimate
effective population size using ABC, DA Tallmon, A Koyuk, G
Luikart, MA Beaumont - Molecular Ecology Resources, 2008

I Adaptive ABC, MA Beaumont, JM Cornuet, JM Marin, CP
Robert - Biometrika, 2009

I Approximate Bayesian computation without summary
statistics: the case of admixture, VC Sousa, M Fritz, MA
Beaumont, L Chikhi - Genetics, 2009

I Review: Marin, Statistics and Computing, 2012



Approximate Bayesian Computation (ABC)

ABC avoids direct evaluation of the LHD and approximates it by
generating pseudo-data (synthetic observations) by forward
simulation from the model

I Basic idea: Identify the values of θθθ which produce simulated
data, xsimxsimxsim, resembling the observed data, xobsxobsxobs

I Simulated data resemble the observed data if some
discrepancy measure ∆θθθ(xsimxsimxsim,xobsxobsxobs) is small



Approximate Bayesian Computation (ABC)

Starting point is Bayes’ theorem:

p(θ|x) =
p(x |θ)p(θ)

p(x)

I x = xobs
I p(θ|x) = posterior

I p(x |θ) = likelihood

I p(θ) = prior

I p(x) = evidence



Rejection ABC scheme
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Rejection ABC scheme

Xobs
!

X Model ( " )∼
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" Prior∼
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Rejection ABC

I ABC rejection sampler is the simplest form of ABC

ABC rejection sampler

I Sample parameter θ from the prior p(θ)

I Simulate dataset xsim under the given model specified by θ:
xsim ∼ p(·|θ)

I Accept θ if ∆θ(xsim, xobs) ≤ ε

I Distance ∆(xsim, xobs) measures the discrepancy between the
simulated data xsim and the observed data y

I The accepted θ are approximately distributed according to the
desired posterior and, crucially, obtained without the need of
explicitly evaluating the LHD



Rejection ABC
I It may be unfeasible to compute the distance ∆(xsim, xobs) for

high-dimensional data

I Lower dimensional summary statistic S(xobs) to capture the
relevant information in x

I Comparison is done between S(xsim) and S(xobs): accept θ if
∆(S(xsim), S(xobs)) ≤ ε

I If S is sufficient wrt θ, then it contains all information in y
about θ (by definition), and using S(xobs) in place of the full
dataset does not introduce any error

I For most models it may be impossible to find sufficient
statistics S , in which case application relevant summary
statistics need to be used

I Use of non-sufficient summary statistics introduces a further
level of approximation



A more advanced ABC: Adaptive Population Monte Carlo
ABC - APMCABC

Step 1. (re-)sample a set of parameters θθθ either from the prior or from
an already existing set of parameters

→ 5000 parameter values

Step 2. Update each parameter using the perturbation kernel

→ given perturbed parameter
simulate from model and generate pseudo-data

compute the distance between simulated and observed data,
and either accept parameter if the distance < ε
or repeat Step 2.

Step 3. For each accepted parameter calculate a weight

Step 4. Normalize the weights
Calculate covariance matrix for next perturbation kernel

Repeat (Step 1→Step 4) while decreasing ε



ABC boosted by HPC: ABCpy

ABCpy: Efficient ABC algorithms with HPC (PASC’2017)

xobs

Nature

xsim

M(θ) θ∗

Accept θ∗: if ∆θθθ(xobs,xsim) < ε

Reject θ∗: if ∆θθθ(xobs,xsim) > ε

ε

0



ABC boosted by HPC: ABCpy

I Each fwd data simulation is costly (from minutes to hours)

I ABC algorithms are parallelizable

I Development of ABCpy



ABC boosted by HPC: ABCpy

I ABCPy: A python suite of ABC, user friendly and modular
[Dutta et. al. 2017a]

I Super-computers: Developed in collaboration with Swiss
Super Computing Center (CSCS)

I Reproducibility

I Usability: In collaboration with CSCS, we offer to infer
model/parameter of your problem using the most powerful
super computer of Europe (CRAY)

I Map-Reduce: For parallelization we use Map-reduce scheme
of Spark, MPI and dynamic allocation MPI (implemented by
us to mitigate imbalance in ABC)



ABCpy: A brief

Implemented ABC algorithms

I For inference:

1. Rejection ABC [Tavaré et. al. 1997]
2. Population Monte Carlo ABC PMC-ABC [Beaumont 2010]
3. Sequential Monte Carlo ABC SMC-ABC [Del Moral et al 2012]
4. Replenishment SMC ABC RSMC-ABC [Drovandi et al 2011]
5. Adaptive Population Monte Carlo ABC APMC-ABC

[Lenormand et al 2013]
6. ABC with subset simulation ABCsubsim [Chiachio et al 2014]
7. Simulated Annealing ABC SABC [Albert et al 2015]

I So which one should we use?



Comparison of algorithms: HPC perspective
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(b) Efficiency

The best algorithm in terms of speedup + efficiency is APMCABC



ABCpy: A brief

I For summary selection: Semi-automatic summary selection
[Fearnhead and Prangle, 2012]

I Specialized distances: Classifier-ABC [Gutmann et. al. 2018],
with automatic summary selection

I Model selection: Random forest ensemble model selection
[Pudlo et. al., 2015]

I Additional: Population Monte Carlo to perform
pseudo-marginal approach using approximate likelihoods:

1. Synthetic Likelihood [Woods 2010]
2. Penalised Logistic Regression [Dutta et. al. 2017c]



Calibration of Force-Field Helium (Kulakova et. al. 2016)
I The LJ potential is given by

VLJ(σLJ , εLJ) =
∑
i

∑
j

4εLJ

((
σLJ
rij

)12

−
(
σLJ
rij

)6
)

(1)

εLJ(zJ) =depth of the potential well
σLJ(nm) =finite distance at which inter-particle potential = 0
rij(nm) =distance between the i and j particles

I Non-bonded Force-Field parameters: θ = (σLJ , εLJ)
I Generative model (fwd simulated with LAMMPS):

MLJ [θ = θ∗]→ {(coordinates(t)) , t = 0, . . . , tend}
I Summary statistics:
FLJ : xxx → fB(t) = 〈exp{−H(t)/(kBT )}〉
H(t) = enthalpy contribution of a helium atom at time t
T = temperature of the system
kB = Boltzmann constant
〈 〉 = ensemble average over all atoms in the system at time t



Calibration of Force-Field Helium (Kulakova et. al. 2016)
I Discrepancy measure:

dLJ(xxx (1),xxx (2)) := dLJ

(
FLJ(xxx (1)),FLJ(xxx (2))

)
:= dLJ

(
f

(1)
B , f

(2)
B

)
= KL

(
f

(1)
B , f

(2)
B

)
=

∫
χ(1)(z) log

χ(1)(z)

χ(2)(z)
dz

where χ(1)(z) and χ(2)(z) are, respectively, the probability

density functions of f
(1)
B and f

(2)
B

I Priors: independent continuous uniform
σLJ ∼ U[0.1(nm), 0.8(nm)]
εLJ ∼ U[0.01(zJ), 1.0(zJ)]

I Perturbation kernel: truncated two-dimensional Gaussian
centered at current value with covariance learned from
previous particles



ABCsubsim vs APMCABC: Posterior distribution

I No assumption of Gaussianity on likelihood functions

I After running both algorithms for 6 steps and 5000 particles

(c) ABCsubsim, Kulakova 2016
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(d) APMCABC, Dutta et. al. 2018



Comparison: APMCABC vs ABCsubsim
to calibrate Lennard-Jones FF of Helium, after Nstep = 6

Euclidean distance bwn Bayes estimate and true parameter value
used to simulate the dataset dE (θ̂, θ0)

Final ABC threshold value, δfinal

Algorithm dE (θ̂, θ0) δfinal

APMCABC 0.00744 0.0138

ABCsubsim 0.03365 0.67



Calibration of TIP4P Force-Field Water

I Water structure and dynamics regulates biological and
physicochemical processes

I TIP4P = rigid nonpolarizable, 4 interaction site, FF with all
bonds and angles constrained using the LINCS algorithm

I Potential energy = LJ + electrostatic interactions:

Unoncov (σTP , εTP) =
∑
i

∑
j

4εTP

[(
σTP
rij

)12

−
(
σTP
rij

)6
]

+
∑
i

∑
j

∑
α

∑
β

qiαqjβ
rij

α and β = indices of the partial charges q of each molecule
Non-bonded FF parameters: θ = (σLJ , εLJ) repulsion and
attraction of the Van der Waals forces



Calibration of TIP4P Force-Field Water

I Generative model (fwd simulated with GROMACS):

MTP [θ = θ∗]→ {(coordinates(t)) , t = 0, . . . , tend}

I After compiling the TIP4P FF with θ∗, we perform an energy
minimization (steepest descend), followed by an NPT
simulation (LINCS)



Calibration of TIP4P Force-Field Water

I LHD assumed Gaussian in existing works and fit is on forces
and energy

I ABC → No assumption of Gaussianity on LHD and fit is on
termodynamical properties

I From experimental studies it is not possible to track the time
dependent position of water molecules, but we can learn their
properties, e.g. different radial distribution functions, using
different diffraction techniques

I Radial distribution functions and self-diffusion coefficient
(Neutron and X-ray diffraction) considered as data



Calibration of TIP4P: summary statistics

Summary statistics: characteristic quantities of the structure and
dynamics of liquids

FTP : xxx → (S1,S2, S3,S4, S5, S6,S7, S8,S9)

First compute:

I the distribution functions (gOH and gOO) of the radial for the
O − H (rOH) and O − O (rOO) atoms

I the (M)ean (S)quare (D)isplacement (MSD) from the
coordinates of the dynamical system



Calibration of TIP4P:
distribution functions of radials for O − H and O − O
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Calibration of TIP4P: (M)ean (S)quare (D)isplacement
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Calibration of TIP4P: summary statistics on distribution
functions of O − H radial

Then compute the summary statistics as follows:

I S1: Estimate of the number of hydrogen bonds per water
molecule - The area under the curve rOH vs gOH until the first
minimum

I S2: Estimate of the donor acceptor hydrogen bond distance -
Value of rOH (nm) at the first minimum of the radial
distribution function gOH

I S3: Mean of gOH



Calibration of TIP4P: summary statistics summary
statistics on distribution functions of O − O radial

I S4: Estimate of number of water molecules in the first
hydration shell - The area under the curve rOO vs gOO until
the first minimum

I S5: Estimate of the max distance of the first hydration shell -
Value of rOO (nm) at the first min of the radial distribution
function gOO

I S6: Mean of gOO

I S7: The height of gOO at the first max of gOO

I S8: Value of rOO (nm) at the first max of the radial
distribution gOO

I S9: Slope of the line, fitted to MSD, which is an estimate of 6
× self-diffusion coefficient



TIP4P: discrepancy, prior, perturnation kernel

Discrepancy measure:

dTP(xxx (1),xxx (2)) := dTP

(
FTP(xxx (1)),FTP(xxx (2))

)
=

1

9

9∑
i=1

|S (1)
i − S

(2)
i |

Priors:
Independent continuous uniform
σTP ∼ U[0.281(nm), 0.53(nm)]
εTP ∼ U[0.2(kJmol−1), 0.9(kJmol−1)]

Outside this range the TIP4P model of water in GROMACS is
extremely chaotic and simulated data set can not be obtained in
reasonable time

Perturbation kernel: as before



Calibration of TIP4P Force-Field Water with APMC-ABC
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The experimental dataset is mostly within the prediction band



Validation of TIP4P Force-Field Water with APMC-ABC

We compare values of a set of properties not used for calibration

I Heat capacity (Cp calmol−1K−1)

I Density (ρ gcm−3) of water at 298K and ice at 250K

I Isothermal compressibility (κT 10−6/bar)

I Dielectric constant (ξ) of water at 298K

Prop. Expt. TIP4P Neutron diff. X-ray diff.

Ice (250K )
Cp 8.3 14.7 12.47 20.02
ρ 0.92 0.937 0.913 1

Water (298K )

Cp 18 20 20.1 18.3
ρ 0.997 0.988 0.958 0.854
κT 45.3 59 57.5 79.1
ξ 78.5 50 47 43

Neutron closer than X-ray diffraction (does not have radial
distribution function of O − H)



Conclusions

I ABC: very powerful methodology for sound statistical
inference in mechanistic network models + processes

I ABCpy: python framework for ABC
I Download from Github

I For a quick start look at ABCpy documentation

I Some simulation models, calibrated using ABCpy

I Can be run on Piz Daint HPC, provided by CSCS

I References:
• Proc. Platform for Advanced Scientific Computing, 2017
• Journal of Chemical Physics, 2018
• Proc. Royal Society. A, 2018
• Frontiers in Physiology, 2018

https://github.com/eth-cscs/abcpy
http://abcpy.readthedocs.io/en/v0.5.0/
https://github.com/eth-cscs/abcpy-models
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