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We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

From the Hamiltonian of a physical system, in principle we can 
derive all properties (observables).
But in practice, the Hamiltonian is often not the starting point.

For instance, given a class of chemical compositions 
(e.g., via prototype formula, such as ABX

3
):

- what is the most stable crystal structure of each material in the 
class?

- which materials are metals / topological insulators / 
superconductors ?

- which material has the highest melting point?
- which materials has a surface optimal for catalysing some 

chemical reaction?

Building maps of materials properties
A quantum many-body problem
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● Design of new materials: 
preparation, synthesis, and characterization is complex and costly 

● About 240 000 inorganic materials are known to exist (Springer 
Materials) 

● Basic properties determined for very few of them

● Number of possible materials: practically infinite

⇨ New materials with superior properties exist but not yet known

 

● Data analytics  tools  will help to identify trends and anomalies in 
data and guide discovery of new materials

The Big Picture
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Mendeleev's 1871 periodic table

From the periodic table of the elements 
to charts of materials

Ga=69.7    Ge=72.6

We have a dream



  

Suppose 
to know the trajectories of all planets in the solar system, 
from accurate observations (experiment)
or
by numerically integrating general relativity equations 
(calculations at the highest level of theory)

Learning → Discovery
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  (Orbital period)² = C (orbit's major 
axis)³

Learning → Discovery

Suppose 
to know the trajectories of all planets in the solar system, 
from accurate observations (experiment)
or
by numerically integrating general relativity equations 
(calculations at the highest level of theory)

Data 
(collected by 
Tycho Brahe)

Statistical learning
(performed by 

Johannes Kepler)

Physical law
(assessed by 
Isaac Newton)
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What’s “big”, then?

● Volume
● Velocity
● Variety
● Veracity issue

Supervised big-data analysis: a flow chart



  

Fast Prediction
Calculate properties 

and functions for 
new values of d 
(new materials)

Descriptor? Don’t we know it from the start?

{RI,ZI} → Hamiltonian

{RI} → Geometry
- translational, rotational, permutational invariant
- coarse graining {RI}?

{ZI} → Chemistry

Training set
Calculate properties and functions 

Pi, for many materials, i
E.g., Density-Functional Theory

Descriptor
Find the appropriate 

descriptor di, 
build a table:  

| i | di | Pi | 

Learning
Find the function P(d) for the table.

Build a chart for the property
Statistical learning
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Figure of merit to be optimized:

Regularization (prefer “lower complexity” in the solution)

(Linear) ridge regression

Explicit solver:

Alternative view, via Hilbert space representation theorem:

Sum over data points!

Ridge Regression: Mathematical formulation

norm
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Kernel Ridge Regression: Mathematical formulation

Non-linear kernel

In all cases, 
a kernel introduces a 
similarity measure
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Pilania, Wang, …, and Ramprasad, Scientific Reports 3, 2810 (2013). DOI: 10.1038/srep02810

KRR success stories: 1D polymers “eugenetics”

Data: 175 linear 4-blocks periodic polymers. 7 blocks: CH2, SiF2, SiCl2, GeF2, 
GeCl2, SnF2, SnCl2, 

Descriptor: 20 dimensions [# building blocks of type i, of ii pairs, of iii triplets]



  

KRR success stories: n-grams for kaggle

Sutton et al., npj Comp. Materials, in press (2019), arXiv: 1812.00085



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Compressed-sensing-based model identification:
Shares concepts with 

Regularized regression. But: Massive sparsification.

Dimensionality reduction. But supervised, and yielding sparse, 
“inspectable” descriptors

Feature/Basis-set selection/extraction. But: non-greedy solver.

Symbolic regression. But: deterministic solver.

Compressed sensing: the quest for
descriptors and predictive models
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d1

d2

The descriptor proposed by 
Phillips and van Vechten in 
1969-70 depends on:
- lattice parameter
- electrical conductivity

An example: predicting crystal 
structures from the composition
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Aim: finding descriptors and learning predictive models
Ansatz: 
P = c

1
d

1
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Where 
P is the property of interest
d

1
, … d

n
 are candidate features, i.e., nonlinear functions of primary 

features (EA, IP, …) 
c

1
, … c

n
 are unknown coefficients, with the extra constraint that these 

(nonzero) coefficients should be as few as possible.
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Principal component analysis

Pearson, K. "On Lines and Planes of Closest 
Fit to Systems of Points in Space". 
Philosophical Magazine 2, 559 (1901)

Orthonormal transformation of coordinates, 
converting a set of (possibly) linearly 
correlated coordinates into a new set of 
linearly uncorrelated (called principal or 
normal) components, such that the first 
component has the largest variance and 
each subsequent has the largest variance 
constrained to being orthogonal to all the 
preceding components

Saad, …, Chelikowsky, and Andreoni, PRB  85, 104104 (2012)
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What's on the 
axes?

Linear combination 
of (possibly all) the 
initial dimensions
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Systematic construction of the feature space: EUREQA

Descriptor (candidates: 242)
a The largest distance between a H atom and its nearest Si neighbor
b The shortest distance between a Si atom and its sixth-nearest Si neighbor
c The maximum bond valence sum on a Si atom
d The smallest value for the fifth-smallest relative bond length around a Si atom
e The fourth-shortest distance between a Si atom and its eighth-nearest neighbor
f The second-shortest distance between a Si atom and its fifth-nearest neighbor
g The third-shortest distance between a Si atom and its sixth-nearest neighbor
h The H-Si nearest-neighbor distance for the hydrogen atom with the fourth-
smallest difference between the distances to the two Si atoms nearest to a H atom

T. Müller et al. PRB 89 115202 (2014):
Data: ~1000 amorphous structures of 216 
Si atoms (saturated)

Property: hole trap depth

EUREQA: genetic programming software. 
Global optimization (genetic algorithm).
Schmidt M., Lipson H., Science, Vol. 324, No. 5923, (2009)

(Linear) dimensionality reduction: principal componentsSystematic construction of the feature space: EUREQA
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Ideal method: regression with ℓ0 regularization
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Ideal method: regression with ℓ0 regularization

For matrices D with uncorrelated columns: LASSO

Optimal solution
Non-polinomial complexity
Small # columns in D
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Convex optimization
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Systematic construction of the feature space: EUREQACompressed sensing in materials science



  



  

Bregman Iteration



  

Split Bregman 
Iteration

Bregman Iteration



  

Parameter free maximally localised Wannier functions?
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(Possibly) optimal solution  
Convex optimization
Moderate # columns in D

We have a dreamB) Proof of Concept: Descriptor for the Classification 
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‖c‖1 “Manhattan”.  Sum of absolute 
values of the elements of c

‖c‖1 “Manhattan”.  Sum of absolute 
values of the elements of c

When there are high correlations, 
LASSO+ℓ0 (LMG et al. PRL 2015):
- use LASSO with lambda in order to 
“switch on” few tens features (say 30-50)
- perform ℓ0 regularization, i.e., for 
1,2,3D solution, enumerate all 1- 2- 3-
tuples and find the best fitting tuple.

Compressed sensing: the quest for
descriptors and predictive models



  

82 octet AB binary compounds

RSAnsatz: atomic features

● HOMO
● LUMO
● Ionization Potential
● Electron Affinity
● Radius of valence s orbital
● Radius of valence p orbital
● Radius of valence d orbital
● Billions of non-linear 

functions of the above
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Local-optimum solution  
Huge # columns in D
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From orthogonal matching pursuit ….

Property
Residual

feature

feature
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Local-optimum solution  
Huge # columns in D

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Property
Residual1

features
S

0

features
S

1

From orthogonal matching pursuit ….

… to Sure Independence Screening + Sparsifying Operator (SISSO)

Proxy of 
global-optimum solution  
Huge # columns in D

Property
Residual

feature

feature

R. Ouyang et al. PRM 2, 083802 (2018), published 7 August 2018)

Compressed sensing: the quest for
descriptors and predictive models



  

Structure map 
with SISSO, 
starting from 
7 atomic + 
6 dimer features
Feature space: 
1011 features

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Compressed sensing: the quest for
descriptors and predictive models

R. Ouyang et al. PRM (2018)
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One descriptor to rule them all: 
Multi-task learning

d1

d2
RS

CsCl

Application: multi-phase stability diagram
Properties: crystal-structure formation energies  



  Ouyang, Ahmetcik, Carbogno, Scheffler & LMG, J. Phys. Mater. 2, 024002 (2019)

One descriptor to rule them all: Multi-task SISSO
Energy differences among 5 crystal structures.



  

One descriptor to rule them all: Multi-task SISSO
Energy differences among 5 crystal structures.

Ouyang, Ahmetcik, Carbogno, Scheffler & LMG, J. Phys. Mater. 2, 024002 (2019)
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regularization) 
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A general scheme about 
training, cross-validation, test 

Training: input (features, descriptor) + labels (values target property)
→ yields one model which minimizes a cost function (incl. 
regularization) 

Cross-validation: used to tune model-complexity
- perform training n times on different split of data. 
  Training + test/validation sets
→ yields one model that minimizes the test (validation) error

Test: evaluation of the performance of the model on data never used 
for training (i.e., the whole cross-validation procedure), aka left-out 
set
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Data-driven model complexity

● In compressed sensing 
the “hyperparameters” are 
- the level of sparsity 
(optimal dimensionality of the 
model)
- the size of the feature space

● Tuned via cross-validation: 
Iterated random selection 
of a subset of the data for 
training and test on the left 
out set 

Ouyang, Ahmetcik, Carbogno, Scheffler & LMG, J. Phys. Mater. 2, 024002 (2019)



  

d1

d2 RS

Octet 
binaries

d'1

d'2

Insulator

Metal

AxBy 
binaries

d''1

d''2

Topological
insulator

Trivial
insulator

Metal

2D honeycomb materials

d*1

d*2

Eads(CO2) on oxides (TH21)

New cost function to be minimized: 
overlap of convex domains

1. # points in the convex overlap domain
2. Area of the domain overlap 
3. Distance between domains

Good also for multi-categorical problems
(see A. F. Bialon et al., Chem. Mater. 28, 2550 (2016))

P (property)
Δ1D (residual)

S2D S1D

Iterative generation of feature subspaces

Charts/maps of materials



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Challenge:
Given the formula AxBy of a binary material AND its crystal 
structure, is it a metal or a nonmetal?

Dataset:
~300 materials from Springer Materials

B is a p-block element, A any element
3D materials (i.e., not layered)
At least one 1st neighbor of A(B) is B(A) 
(i.e., no materials containing “clusters” of A and/or B) 

Classification AND primary features from experiments: 
ionization energy, electron affinity, 
(Pauling) electronegativity, 
covalent radius, 
valence, atomic fraction, 
AB interatomic distance, 
cell volume normalized by the sum of atomic volumes 

SISSO: metal/nonmetal classification
of binary materials 



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

x Atomic fraction
IE Ionization energy
χ Electronegativity

SISSO: metal/nonmetal classification
of binary materials 

R. Ouyang et al. PRM (2018)



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

HgTe (std pressure, ZB)
GaAs (std pressure, ZB)

CdTe (std pressure, ZB)

(9 GPa, RS)
(29 GPa, oI4)

(4 GPa, RS)

SISSO: metal/nonmetal classification
of binary materials 

R. Ouyang et al. PRM (2018)



We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Space between bars: 1GPa

SISSO: metal/nonmetal classification
of binary materials 

R. Ouyang et al. PRM (2018)



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”
Perovskites’ stability: an improved
Goldschmidt Tolerance Factor

Ionic radius

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

ABX3
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“Zincblende/Wurtzite or Rocksalt?”

Ionic radius

Oxidation state

1 / μ = Octahedral factor

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

Our stable perovskites: τ < 4.18, accuracy 92%

Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, Sci. Adv. 5, eaav0693 (2019)

ABX3

Perovskites’ stability: an improved
Goldschmidt Tolerance Factor



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Ionic radius

Oxidation state

1 / μ = Octahedral factor

Goldschmidt* stable perovskites: 0.825 < t < 1.059, accuracy 79%

Our stable perovskites: τ < 4.18, accuracy 92%

τ < 3.31 or τ > 5.92, 99% accuracy (1/3 of the training data)

τ < 3.31 or τ > 12.08, 100% accuracy (1/4  of the training data)

ABX3

Perovskites’ stability: an improved
Goldschmidt Tolerance Factor

Bartel, Sutton, Goldsmith, Ouyang, Musgrave, LMG &Scheffler, Sci. Adv. 5, eaav0693 (2019)



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Improved Goldschmidt Tolerance Factor:
Materials design



  

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”Improved Goldschmidt Tolerance Factor:
Extension of the materials space

La2BB’O6

Cs2BB’Cl6



  

Prototype formula:
AB-LNM
AB = {As,Sb,Bi}
LNM = {S, Se,Te}

SISSO: predicting new tetradymite
topological insulators

Cao, Liu, Ouyang, LMG, Zhou, Scheffler Zhang, Carbogno, in preparation (2019)
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Prototype formula:
AB-LNM
AB = {As,Sb,Bi}
LNM = {S, Se,Te}

SISSO: predicting new tetradymite
topological insulators

{RI,ZI} → Hamiltonian

{ZI} → {RI,ZI} → Properties

Cao, Liu, Ouyang, LMG, Zhou, Scheffler Zhang, Carbogno, in preparation (2019)



  

Compressed-sensing-based model identification:
Shares concepts with 

● Regularized regression. But: Massive sparsification.

● Dimensionality reduction. But supervised, and yielding sparse, 
“inspectable” descriptors

● Feature/Basis-set selection/extraction. But: non-greedy solver.

● Symbolic regression. But: deterministic solver.

Compressed-sensing-based model identification
(SISSO, and beyond): The context



  

Subgroup discovery

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)
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We have a dreamB) Proof of Concept: Descriptor for the Classification 
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Ingredients:
Population P = {1, … , n}
Target Variable y: P → Y
Description variables x

j
: P → X

j

Basic propositions Π = {π
1
, … , πk}

Objective functions: f 
{All possible subgroups of P} → ℝ

Subgroup discovery: finding descriptive 
statements about outstanding groups



  

Ingredients:
Population P = {1, … , n}
Target Variable y: P → Y
Description variables x

j
: P → X

j

Basic propositions Π = {π
1
, … , πk}

Objective functions: f 
{All possible subgroups of P} → ℝ

Task:
Finding  σ(i) = π

1
(i)

 
˄ … ˄ π

m
(i)

For which f(P) = max

Typical form of f:
“Size of subgroup” ×“Reduction of 
variance of Y compared to the 
whole population” 

We have a dreamB) Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”
Subgroup discovery: finding descriptive 
statements about outstanding groups



  

Distribution of adsorption energies of CO2 
on different surfaces of several metal-oxides

Subgroup discovery in practice
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Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)

Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)

Subgroup discovery in practice



  

Size of subgroup SG

Size of full set P

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)

Subgroup discovery in practice



  

Size of subgroup SG

Size of full set P

Mean absolute deviation 
from the median 
(spread of distribution)

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)
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Size of subgroup SG

Size of full set P

Mean absolute deviation 
from the median 
(spread of distribution)

Median of the distribution

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)
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Size of subgroup SG

Size of full set P

Mean absolute deviation 
from the median 
(spread of distribution)

Median of the distribution

Maximize median shift

Minimize relative spread of SG

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)
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Size of subgroup SG

Size of full set P

Mean absolute deviation 
from the median 
(spread of distribution)

Median of the distribution

Maximize median shift

Minimize relative spread of SG

SG is described by a selector, 
a conjunction of statements (s1 ˄ s2 ˄ … ) 
about a list of given features e.g., 
s1 = surface energy larger than … , 
s2 = p-band center of surface O less than ...

Boley, Goldsmith, LMG & Vreeken, Data Min. Knowl. Disc. 31, 1391 (2017)
Goldsmith, Boley, Vreeken, Scheffler & LMG, New J. Phys. 19, 013031 (2017)

Subgroup discovery in practice
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Subgroup discovery in practice



  

The (SISSO) model for the discovered 
subgroup 
- is more accurate than the global model
- has a different descriptor due to 
different physics. 

Small work function: 
Surfaces with dominantly ionic character 

Subgroup discovery in practice



Acknowledgements

NOMAD has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No. 676580.

Compressed sensing, SISSO, and metal/insulator proof of concepts
Jan Vybiral, Runhai Ouyang, Emre Ahmetcik, Stefano Curtarolo, Sergey Levchenko,
Claudia Draxl
Application of SISSO to perovskites
Christopher J. Bartel, Christopher Sutton, Bryan R. Goldsmith, Runhai Ouyang, 
Charles B. Musgrave
Application of SISSO to topological insulators
Guohua Cao, Runhai Ouyang, Zizhen Zhou, Huijun Liu, Christian Carbogno, Zhenyu 
Zhangave
Transparent conducting oxide: NOMAD-kaggle competition 
Christopher Sutton, Angelo Ziletti, 
Claudia Draxl, Daan Frenkel, Kristian Thygesen, Samuel Kaski, Bernhard Schölkopf
Subgroup Discovery and application to CO2 adsorption
Mario Boley, Jilles Vreeken, Aleksei Mazheika, Sergey Levchenko

All the above 
Matthias Scheffler



Acknowledgements

NOMAD has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No. 676580.

Compressed sensing, SISSO, and metal/insulator proof of concepts
Jan Vybiral, Runhai Ouyang, Emre Ahmetcik, Stefano Curtarolo, Sergey Levchenko,
Claudia Draxl
Application of SISSO to perovskites
Christopher J. Bartel, Christopher Sutton, Bryan R. Goldsmith, Runhai Ouyang, 
Charles B. Musgrave
Application of SISSO to topological insulators
Guohua Cao, Runhai Ouyang, Zizhen Zhou, Huijun Liu, Christian Carbogno, Zhenyu 
Zhangave
Transparent conducting oxide: NOMAD-kaggle competition 
Christopher Sutton, Angelo Ziletti, 
Claudia Draxl, Daan Frenkel, Kristian Thygesen, Samuel Kaski, Bernhard Schölkopf
Subgroup Discovery and application to CO2 adsorption
Mario Boley, Jilles Vreeken, Aleksei Mazheika, Sergey Levchenko

All the above 
Matthias Scheffler

Tutorial (jupyter notebook)
On symbolic + regularized regression (from linear regression to SISSO)

Ask me (luca@fhi-berlin.mpg.de)
for user ID and password
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