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Motivation
Materials Genome Initiative

Experiments Computation ML?

National Quantum Initiative 

Unification with ML models



JARVIS-DFT, FF and ML datasets and tools
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>30000 bulk, 900 monolayer materials



Artificial 

Intelligence

Optimization problem 

(swarm, genetic 

algorithm)

Logic (Fuzzy logic, 

product control 

system)

Uncertain reasoning 

(Bayesian net, game 

theory)Statistical/Machine 

learning

Neural network

(feedforward, 

backward 

propagation)

Deep Neural network

(many layers of NN, 

less domain 

knowledge)

Supervised 

(classification, 

regression)

Input-output

Unsupervised 

(clustering/association)

Input-no output

4

Cat/dog images vs Materials data



Explainable AI

5https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.darpa.mil/program/explainable-artificial-intelligence


CFID descriptors
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1557 descriptors/features for one material

• Classical force-field inspired descriptors
• Arithmetic operations (mean, sum, std. deviation…) of 
electronegativity, atomic radii, heat of fusion,…. 
of atoms at each site 
(example: Electronegativity  of Mo+Mo+S+S+S+S)/6 = 0.15
• Atomic bond distance based descriptors
• Angle based descriptors

https://github.com/usnistgov/jarvis
https://hackingmaterials.github.io/matminer/index.html
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1.5 % unary, 26% binary, 56 % ternary, 

13 % quaternary, 2 % quinary and 1% 

senary compounds, 1-96 atoms 

https://github.com/usnistgov/jarvis
https://hackingmaterials.github.io/matminer/index.html


Visualizing multi-dimensional data with t-SNE
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• Converts similarities between data points to joint probabilities

• Visualization with t-SNE for ~25000 materials

http://holoviews.org/

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

http://holoviews.org/
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


Properties of interest & histogram plots
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• Formation energy
• Bandgap
• Bulk/shear modulus
• K-points, cut-off
• Thermoelectric metrics
• Solar-cell efficiency
• Refractive index
• 2D Exfoliation energy
• Surface energy 
• Grain boundary energy
• Topological spillage

New



Classification: ROC curves
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Email: kamal.choudhary@nist.gov

Thermoelectric

Solar-cell efficiency

Perfect model area: 1

Random guess: 0.5



Regression models: formation energy and 
bandgap model
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Learning curve shows scope of further improvement



Explainability: feature importance
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• Chemical features most important followed by RDF and NN
• Incrementally adding structural features decreases MAE



Regression
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Email: kamal.choudhary@nist.gov

2D

3D

Property #Data-points MAECFID-DFT MAECFID-DFT (CV) MAEDFT-Exp

Formation energy 

(eV/atom)

24549 0.12 0.17±0.05 0.136 

OPT-bandgap (eV) 22404 0.32 0.37±0.24 1.33 

MBJ-bandgap (eV) 10499 0.44 0.56±0.26 0.51 

Bulk modulus (GPa) 10954 10.5 12.63±3.3 10.0 

Shear modulus (GPa) 10954 9.5 11.55±3.15 10.0 

OPT-nx (no unit) 12299 0.54 0.65±0.15 1.78 

OPT-ny (no unit) 12299 0.55 0.65±0.16 -

OPT-nz (no unit) 12299 0.55 0.70±0.18 -

MBJ-nx (no unit) 6628 0.45 0.55±0.14 1.6 

MBJ-ny (no unit) 6628 0.50 0.51±0.15 -

MBJ-nz (no unit) 6628 0.46 0.54±0.14 -

Exfoliation energy 

(meV/atom)

616 37.3 60.13±10.41 -



2D materials-screening example
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• ~5000 2D materials predicted
• Requires expensive  DFT calculations for predicting properties such as bandgap, exfoliation energy etc.
• Use of ML drops down the time to a few seconds
• Using this technique we identified new 2D materials such as CuI, InS etc.
• Validated using DFT



Molecules

14

Email: kamal.choudhary@nist.gov

MAE internal energy (eV/atom): 0.002

r2: 0.97

(On-going work)



Surfaces
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Email: kamal.choudhary@nist.gov

MAE: 0.13 J/m2

r2:0.94

(On-going work)



Grain boundaries
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Email: kamal.choudhary@nist.gov

MAE: 0.04 J/m2

r2:0.98

(On-going work)

Symmetric tilt GBs

FCC: Al, Ni, Cu, Ag, Au, Pd, Pt

BCC: Fe, W, Ta, Mo

Diamond: Si



Proteins
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Email: kamal.choudhary@nist.gov

>10000 proteins

>630000 AFLOW

>360000 OQMD

>111000 COD

>820000 MP

> 30000 JV   

t-SNE visualization

(On-going work)



Stringent validation: Genetic Algorithm with ML

Picture from GASP manual

• Based on ‘Survival of the fittest’ theory: fitness of crystal 
structure based on energy of structure

• Parents to offspring crystal structure
• Generally energy is obtained from DFT, MD…let’s try ML ?

D. M. Deaven, Molecular geometry optimization with a genetic algorithm, Physical Review 
Letters, 75 (1995)
G. Ceder, Data-mining-driven quantum mechanics for the prediction of structure, MRS 
Bulletin, 31 (2006)
https://github.com/henniggroup/GASP-python/
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https://github.com/henniggroup/GASP-python/


Genetic algorithm with ML
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• MoS2, WS2 indeed stable as in DFT and experiments

• Need further verification for low-lying energy structures with DFT

• New way of validating ML model for 

materials



Web-app: DEMO
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https://www.ctcms.nist.gov/jarvisml/

• How to use the model?

https://www.ctcms.nist.gov/jarvisml/


Summary
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• Unified machine learning descriptors for various classes of materials
• All the code and data publicly available
• Formation energy convex hull test, beyond data-science metric
• Web-app for on-the fly prediction of properties
• AIMS workshop: August 1-2, 2019, Registration open
• More data and tools on the way
• Important links:

✓ https://jarvis.nist.gov/
✓ https://github.com/usnistgov/jarvis
✓ Slides available at: https://www.slideshare.net/KAMALCHOUDHARY4/

Thank you for your time!

Email: kamal.choudhary@nist.gov

https://jarvis.nist.gov/
https://github.com/usnistgov/jarvis
https://www.slideshare.net/KAMALCHOUDHARY4/

