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Machine-learning in a nutshell

Chemical structures/environments need to be cast in a complete but
concise mathematical representation

The input/label pairs are fed to a learning scheme, tuned by
hyperparameters θ, that can then be used to perform different tasks on
new data

*

* *

*
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Machine Learning of Atomic-Scale Properties Based on Physical Principles,
M Ceriotti, MJ Willatt, G Csányi, Handbook of Materials Modeling: Methods: Theory and Modeling 2018



Supervised learning with kernels

Predict the properties of a bunch of molecules based on few reference
calculations
Use kernel functions as basis - turns the problem into a linear fit onto a
training set
Make predictions on new molecules, benchmark accuracy on a test set

3 Michele Ceriotti https://cosmo.epfl.ch Machine learning More than potentials



Supervised learning with kernels

Predict the properties of a bunch of molecules based on few reference
calculations
Use kernel functions as basis - turns the problem into a linear fit onto a
training set
Make predictions on new molecules, benchmark accuracy on a test set

train

20.1

15.7

4.3

9.6

17.2

E (Aj) =
∑
i

wiK (Aj ,Ai)

3 Michele Ceriotti https://cosmo.epfl.ch Machine learning More than potentials



Supervised learning with kernels

Predict the properties of a bunch of molecules based on few reference
calculations
Use kernel functions as basis - turns the problem into a linear fit onto a
training set
Make predictions on new molecules, benchmark accuracy on a test set

train

20.1

15.7

4.3

9.6

17.2

test

21.2
11.2

6.2

23.2
19.4

E (A) =
∑
i

wiK (A,Ai)

3 Michele Ceriotti https://cosmo.epfl.ch Machine learning More than potentials



Machine learning with a physical mindset

General applicability: suitable for all systems and all types of properties
Well-principled: incorporates structure and symmetries of physical laws
Not only a fancy interpolator: use ML to gain insights and understanding

ĤΨ = EΨ E (q) =
∑
ij

v (rij) + . . . , E (q) = ML (q| {qi ,Vi})
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MC, Tribello, Parrinello, PNAS (2011); Engel et al, Nat. Comm. (2018); Anelli et al., PRM (2018);
http://interactive.sketchmap.org



A transferable ML model for
materials and molecules



Symmetry-adapted atom-density representations

Structural representation based on a decorated atom-density vector |A〉
Write in position representation as a sum of atom-centered Gaussians

Use abstract kets |α〉 to encode the nature of the atoms

Permutation-invariant ,, but not translation-invariant /
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Translational invariance

Translational symmetry can be recovered by integration over T̂ group
Integration leads to severe information loss
Symmetrize tensor products to reduce information loss
A convolution of Gaussians is a Gaussian . . .∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition
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Translational symmetry can be recovered by integration over T̂ group
Integration leads to severe information loss
Symmetrize tensor products to reduce information loss
A convolution of Gaussians is a Gaussian . . .∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition∫

dt g (t + r− ri) g
(
t + r′ − rj

)
=∫

dt g (t) g
(
t + r′ − rj − r + ri

)
=

g̃
(
(r′ − r)−

(
rj − ri

))
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Additive Property Models & Beyond

Crucial observation: learning with an average kernel is equivalent to
learning an atom-centered additive energy model

E (A) =
∑

i WiK (A,Ai)
K (A,B) =

∑
i∈A,j∈B k

(
Xi ,Xj

) ⇐⇒ ε (X ) =
∑

i wik (X ,Xi)
E (A) =

∑
i∈A ε (Xi)

Entropy-regularized match provides a natural way to go beyond additive
models, retaining a local environment expansion
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De, Bartók, Csányi,MC, PCCP (2016)

http://dx.doi.org/10.1039/C6CP00415F


Rotational invariance

How about rotations? Not invariant,
〈
R̂r
∣∣∣X〉

T̂
6= 〈r|X 〉T̂

Integration over rotation yields
∣∣X (1)

〉
(atom pair distribution!)

Again, we can use tensor products to retain information.∫
dR̂R̂ |X 〉 ⊗ |X 〉 =

∣∣X (2)
〉
incorporates 3-body correlations

*

*
*
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Variations on a theme
Most of the existing density-based representations and kernels emerge
as special cases of this framework

Basis set choice (e.g. plane waves basis for
∣∣A(2)

〉
T̂
)

Projection on symmetry functions (Behler-Parrinello)〈
k
∣∣∣A(2)

〉
T̂

=
∑
ij

∣∣αiαj

〉
eik·rij
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〉
T̂
)

Projection on symmetry functions (Behler-Parrinello)〈
αβG2

∣∣Xj

〉
=
〈
α
∣∣αj

〉 ∫
drG2 (r)

〈
βr
∣∣∣X (1)

j

〉
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Willatt, Musil,MC, JCP (2019), https://arxiv.org/pdf/1807.00408;
R. Drautz, PRB (2019)



The connection with SOAP

What if we use radial functions and spherical harmonics?
Symmetrized tensor product can be written in a breeze
→ SOAP power spectrum!
Alternative construction, but fully equivalent to kernel formulation
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Optimizing representations
and what we learn in the process



Understanding the range of interactions

Environment kernels can be built for different cutoff radii
Dimensionality/accuracy tradeoff, a measure of the range of interactions
A multi-scale kernel K (A,B) =

∑
i wiKi (A,B) yields the best of all worlds.

Same results can be achieved by optimized radial scaling of
〈
r
∣∣Xj

〉
R̂
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Bartók, De, Kermode, Bernstein, Csányi,MC, Science Advances (2017) [data: QM9, von Lilienfeld&C]

http://dx.doi.org/10.1126/sciadv.1701816
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Willatt, Musil,MC, PCCP (2018)

http://dx.doi.org/10.1039/C8CP05921G


A data-driven periodic table of the elements

How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Willatt, Musil,MC, PCCP (2018); [data: Elpasolites, von Lilienfeld&C]

http://dx.doi.org/10.1039/C8CP05921G


Examples & Applications



Accurate predictions for molecular crystals

Substituted pentacenes - model systems for molecular electronics

Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018)

http://dx.doi.org/10.1039/C7SC04665K


More than interatomic potentials

Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials
Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
Accurate enough to do structure determination!
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Recognizing active protein ligands

A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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Bartok, De, Poelking, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

http://dx.doi.org/10.1126/sciadv.1701816


Questions?



Tensorial properties and beyond



Machine-learning for tensors

In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs

k (X ,X ′)↔ 〈y (X ) ; y (X ′)〉 , so k
(
ŜX , Ŝ ′X ′

)
↔
〈
y
(
ŜX
)

; y
(
Ŝ ′X ′

)〉
Properties that are invariant under Ŝ must be learned with a kernel that
should be insensitive to the operation

k
(
ŜX , Ŝ ′X ′

)
= k (X ,X ′)

How about machine-learning tensorial properties T? The kernel should be
covariant to rigid rotations - need a symmetry-adapted framework

kµν (X ,X ′)↔ 〈Tµ (X ) ;Tν (X ′)〉 → kµν
(
R̂X , R̂′X ′

)
= Rµµ′kµ′ν′ (X ,X ′)R′νν′
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Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csányi, &MC, PRL (2018)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


λ−SOAP: a SO (3) compliant kernel

Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components
Tλ, corresponding to the representations of SO (3)
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

k (X ,X ′) =

∫
dR̂ κ

(
X , R̂X ′

)
, κ (X ,X ′) =

∣∣∣∣∫ ψX (x)ψX ′ (x)dx
∣∣∣∣2

10.1103/PhysRevLett.120.036002
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image fro Wikipedia

T λµ
(
R̂ (X )

)
= Dλµµ′

(
R̂
)
T λµ′ (X )

10.1103/PhysRevLett.120.036002
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λ−SOAP as a descriptor

For the mathematically-inclined: we can see this as an extension of the
density-representation framework∫

dR̂ 〈r| R̂
∣∣Xj

〉
〈r′| R̂

∣∣Xj

〉
〈r′′| R̂ |λµ〉 →

〈
rr ′ω θφ

∣∣∣X (2)
jλµ

〉
Easier to compute by expanding the density in Rn (r)Y l

m

(
r̂
)
, leading

explicit power-spectrum-like representation
〈
nn′ll ′

∣∣∣X (2)
jλµ

〉

*
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Machine-Learning the Dielectric Responses

A demonstration of the SA-GPR framework, and the λ-SOAP kernel -
learning the dielectric response of water oligomers

The kernels for multi-atomic systems can be built with an additive ansatz -
and that gives meaningful partitioning in atomic/molecular contributions

kµν (A,B) =
1

NANB

∑
ij

kµν
(
XAi ,XBj

)
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Molecular polarizabilities at the CCSD level

DFT is not very accurate for the dielectric response. Train a ML model
(AlphaML) on the QM7 dataset with CCSD accuracy
The model can extrapolate to much large compounds (up to aciclovir
C8H11N5O3) with better-than-DFT accuracy
Atom-centered environment decomposition of α and the DFT error
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Locality: Curse or Blessing?

Extended conjugated systems are a challenge for both ML and
electronic-structure methods (diverging polarizability, need
multi-reference methods)
AlphaML is local and additive, so it saturates to the core of the largest
structure in training. Ends up being much less insane than DFT, but clearly
points at the challenge of non-local physics.

10 15 20
nC

10

15

20

25

/n
C

(a
.u

.)

60

ML CCSD

ML B3LYP

REF CCSD

REF B3LYP

ALKENES

ACENES

26 Michele Ceriotti https://cosmo.epfl.ch Machine learning More than potentials



Learning the dielectric response of water

The SA-GPR framework, and the λ-SOAP kernel, works as well for bulk
systems
The dielectric constant involves non-additive effects. ML improves
dramatically by learning a proxy that is approximately additive

Clausius-Mossotti: α = (ε− 1)(ε+ 2)−1V
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A transferable model of the electron density

Write the density in atom-centered terms. Use a φk ≡ RnY l
m expansion.

F (ρ) =

∫
dr

∣∣∣∣∣ρ (r)−
∑
ik

cikφk (r− ri)

∣∣∣∣∣
2

+ η |x|2 , cinlm =
∑
jm′

xjnlmk
l
mm′

(
Xi ,Xj

)
Machine-learn directly the full density

Avoid the non-uniqueness of atoms-in-molecules decompositions
Tricky due to non-orthogonality: x coefficients of different orbitals and
atoms are coupled by 〈

φk (r− ri)φk′
(
r− r′i

)〉
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A transferable model of the electron density

Very efficient learning, but limited by the basis set accuracy

Extremely transferable: learn on C4 molecules, predict on C8

Needs more work on optimizing the basis set

Somewhat disappointing accuracy on energetics. Better to learn directly?
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Accuracy, efficiency and errors



Train set optimization to reduce errors
The train set should cover uniformly the relevant space

Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Sparse kernel training

‘‘But the cost of kernel methods grow with train set size!’’ . . . does it?
Sparse kernel learning is actually easy and effective (M � N)

y (X ) =
∑
M

xMk (X ,XM) , L2 =
∑
N

|yN − y (XN)|2 + λ |x|2

Learning charge density: we can keep 100 environments out of 10000

101 102 1000

training molecules

1.5

2

2.5

3

ϵ ρ
(%

)

M=1500

M=500

M=100

32 Michele Ceriotti https://cosmo.epfl.ch Machine learning More than potentials

"Machine Learning of Atomic-Scale Properties Based on Physical Principles",
in Handbook of Materials Modeling (2018);



Sparse representation for data efficiency

Symmetry-functions are hard to choose

Systematic expansions à la SOAP are huge and expensive

Solution: automatic feature selection based on CUR or FPS idea applied to
representation space
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Imbalzano, Anelli, Giofré, Klees, Behler,MC, JCP (2018)

http://dx.doi.org/10.1063/1.5024611


An accurate & inexpensive error estimation

Generate an ensemble of GPR models, and use distribution of predictions

y (X ) =
1

NRS

∑
i

y(i) (X ) , σ2 (X ) =
1

NRS − 1

∑
i

(
y(i) (X )− y (X )

)2
Verify accuracy by the distribution of errors P (|y (X )− yref (X )| |σ (X ))
Use maximum-likelihood to calibrate the uncertainty σ (X )→ ασ (X )γ−1

re
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Mymachine learning wishlist

General applicability: suitable for all systems and all types of properties
Well-principled, mathematically robust and physically inspired

Symmetries of representations and target quantities
Locality, additivity, smoothness, conservation laws. . .

Not only a fancy interpolator: use ML to gain insights and understanding

An inductivist turkey
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