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The intrinsic dimension of a dataset

The TWO-NN approach for ID estimation

The case of variable ID

Application to a molecular dynamics trajectory
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Intrinsic dimension

● Data are defined in a space with D variables

● However, the data lie on hypersurface of lower dimension d < D 

● This dimension is called intrinsic dimension



  

Intrinsic dimension
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6xN

The state of a molecule is described by 6N variables

Due to soft and hard constraints, the independent phase space directions are d << 6N

   



  

● Data are sampled from a distribution with density ρ(X) 

● If ρ(X) is  onstant, distances between points in the dataset follow scaling laws 
that depend only on d   

● Example: correlation dimension

● If ρ(X)  is constant, # of points at distance < ε  from  point i  scales as
 
                N

i
(ε)~εd

● d can be estimated with simple linear fit 

● when ρ(X) is variable, the scaling is violated, estimation fails dramatically 
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ID estimation



  

ID estimation: TWO-NN
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● TWO-NN: estimating the ID in case of (strongly) variable density  

Make two broad assumptions:

● H1) the data points x
i 
are independent samples from a density ρ(x).                          

● H2) local uniformity: ρ(x) ~ const. in the region containing the first 2 neighbors of x
i 
 

●  r
i1
,r

i2
  distances of 1st and 2nd neighbor of point i 

●  μ
i
=d

i2
/d

i1
 follows a Pareto distribution: P(μ)=dμ-d 

● The distribution of μ depends only on d 

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific Reports 7, 12140. 
(2017)



  

ID estimation: TWO-NN

●  r
i1
,r

i2
  distances of 1st and 2nd neighbor of point i 

●  μ
i
=d

i2
/d

i1
 follows a Pareto distribution: P(μ)=dμ-d      →  F(μ)=1-μ-d  

● Fit the empirical cumulative distribution of the μ
i 
and estimate d  

● Equivalently, linear fit on log(1-F(μ))=-d logμ  
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fit F
emp

(μ) with 1-μ-d  fit  log(1-F
emp

(μ)) with -d logμ



  

The problem of multiple IDs

the data may lie on several manifolds,  each with different ID 

Simple example: just merge two datasets with different ID

the data may lie on several manifolds,  each with different ID 

Is this an artificial oddity or a common situation?
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Extending TWO-NN to multiple IDs

● TWO-NN assumptions:

● H1) the data points x
i 
are independent samples from a density ρ(x).                          

● H2) local uniformity: ρ(x) ~ const. in the region containing the first 2 neighbors of x
i 
 

Additional assumption:

● H3) the distribution ρ(x) has support on K manifolds with different IDs  d=d
1
,…,d

K
 

● Under H1), H2), H3) the distribution of μ is simply a mixture of Pareto distributions
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Extending TWO-NN to multiple IDs

Estimate parameters p,d with Bayesian approach

● Fix  

● Compute posterior distribution 

● Average  

● to sample the posterior, we must introduce latent variables Z=Z
1
,…,Z

K
 

manifold membership of each point

● Estimate jointly d,p,Z by Gibbs Sampling of the posterior distribution 
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Extending TWO-NN to multiple IDs

Little problem: this approach does not work!

  Two manifolds of dimension  d
1
=4  and d

2
=5,..,9    (Gaussian ρ)

  
  estimation of  d

1
 and d

2 
 is inaccurate

  estimation of Z is completely wrong 
 (mutual information MI between true and estimated membership Z is 0)
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Extending TWO-NN to multiple IDs

Let the neighborhood of point i be defined by its first q neighbors

        # neighbors with same Z as i                       

       # neighbors with diffferent Z  

We get non-uniform neighborhoods:            >  

Problem in correctly estimating Z!

  
One more assumption:

H4) the manifolds have a small intersection:

   neighborhoods must be approximately uniform

  We enforce this through additional term in the likelihood
  
 

                Probability that two neighbors are in the same manifold 
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Extending TWO-NN to multiple IDs

We enforce uniform neighborhoods through additional term in the 
likelihood
 

Now we get uniform neighborhoods and correct estimates! 
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 Probability that two neighbors are in the same manifold 



  

Heterogeneous ID algorithm (Hidalgo)
M Allegra, E Facco, A Laio and A Mira, arXiv:1902.10459 (2019)

Find regions (manifolds) of different ID in the data

Works also for nonlinear and topologically complex manifolds

 E.g. circle in d=1, swiss roll in d=4, torus d=2, sphere d=5, sphere d=9
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Heterogeneous ID algorithm (Hidalgo)
M Allegra, E Facco, A Laio and A Mira, arXiv:1902.10459 (2019)

Find regions (manifolds) of different ID in the data

Works also for nonlinear and topologically complex manifolds

   Circle d=1, swiss roll in d=4, torus d=2, sphere d=5, sphere d=9

   Estimated dimensions 0.9,2.0,4.1,5.2,8.5
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Real example: phase space of folding protein

● consider a simulation of unfolding/refolding villing headpiece

● for each of the N ~ 32,000 configurations,  D=32 dihedral angles.

We find four manifolds,

● three with low dimensions d=11.8,d=12.9, d=13.2

● one with high dimension d=22.9

Which configurations are assigned to the different manifolds?

● Consider q=fraction of native contacts (=degree of folding)
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Example: phase space of folding protein
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● Folded configurations are in the 
high-dimensional manifolds

● The local ID is able to discriminate 
between folded and unfolded 
configurations 

The effective # of phase space directions the system can explore varies in the two states



  

Example: brain imaging time series
● Consider 202 fMRI images of the brain during visuospatial task 

● N=40,000 brain voxels; for each voxel, BOLD time series with D=202 points

● We find two manifolds with dimensions d=31.9, d=16.1

● Consider Φ, “clustering frequency”, measuring how many times a voxels participates to 
transient coherent patterns
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Companies with high Φ involvement 
are preferentially assigned to the high 
dimensional manifolds

Φ is related to task involvement



  

Conclusions

● We extended a recently developed ID estimator, TWO-NN, to the case where the ID is 
variable in a single dataset

● The method rests on quite weak assumptions (local uniformity of density and dimension)

● We find regions of different local ID in the data

● In real data, we find large variations of the ID, highlighting relevant structure in the data

● ID estimation is not just a preliminary step, but can highlight structure in the data
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Extending TWO-NN to multiple IDs

What is the problem?

Pareto distributions with different d are highly overlapping!

The Z assigment in the Gibbs sampling,  based on μ, is not reliable 
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ID estimation: projective approach 

● Project D-dimensional data into lower dimension d : 

● Try different d and evaluate for each a “loss function”              

●             measures the “data loss” occurring in the projection. 

                                          preservation of original distance relations
                  
                                          preservation of original covariance matrix

● d is “estimated” from tradeoff between dimension reduction and data loss

● Problem (1): Computationally burdensome (search for optimal projection for each d)

● Problem (2): robust ID estimates only if                has large gap as a function of d

if no gap, the estimation can be rather arbitrary  
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Example: companies balance sheets

● consider D=38 balance sheet variables for N=8000 companies

● We find four manifolds with dimensions  d=5.4,d=6.4,d=7.0, d=9.1

● Consider the financial risk of the companies assigned to different manifolds
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Companies with higher risk 
are preferentially assigned to 
low dimensional manifolds!



  

ID estimation: projective approach 

● Example: Principal Component Analysis (PCA)

● Prjoects data onto linear subspace spanned by first d eigenvalues of
 
covariance matrix XTX.              Loss: 

● Typical data:

● How can one select an appropriate d?
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ID estimation: TWO-NN
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● points are sampled independently

● ρ constant over region A 

● n=# of points in a region A 

● n  follows Poisson law P(n)=(ρV)n/n! exp(-ρV)     

● Consider hypersheprical shells defined by first 
and second neighbor of a point

● f(v
i1
,v

i2
)= exp(-ρv

i2
) dv

i1
 dv

i2

● derive f(r
i1
,r

i2
) 

● derive f(r
i2
/r

i1
)

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific 
Reports 7, 12140. (2017)



  

Is the ID uniform?

Sometimes the model fails...

 

● 1) the density is strongly varying even on the scale of the first two neighbors 

● 2) the dimension is not uniform in the dataset
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